

FERTBIO 2016

"RUMO AOS NOVOS DESAFIOS" 16 a 20 de Outubro Centro de Convenções de Goiânia - GO

Zinc (Zn) fertiliser use and its impact in human health

Martin R. Broadley

EDICIN

Munir Zia, Waqar Ahmad, Diriba Kumssa, Edward Joy, Louise Ander, Michael Watts, Alexander Stein, Scott Young

British Geological Survey

NATURAL ENVIRONMENT RESEARCH COUNCIL

Zinc is as essential element for people (and plants!)

Zinc is bound within 1000s of proteins in people (and plants)

~14 / 10 mg Zn *capita*⁻¹ day⁻¹ is required for adult males / females

Zn deficiency (ZnD) increases:

incidence and severity of diarrhoea respiratory tract infections (pneumonia) malarial mortality risk of childhood stunting (height-to-weight ratio)

Biomarkers of ZnD include:

plasma / serum Zn concentrations stunting rates dietary intake assessments (direct or supply-based) others t.b.c.

Dietary Zn supply: ~20% are deficient

Diriba Kumssa

Kumssa DB, Joy EJM, Ander EL, Watts MJ, Young SD, Walker S, Broadley MR (2015). Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. *Scientific Reports*, **5**, 10974.

Zn deficiency risks increased due to phytate-P in cereal grains and legume seeds

Kumssa DB, Joy EJM, Ander EL, Watts MJ, Young SD, Walker S, Broadley MR (2015). Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. *Scientific Reports*, **5**, 10974.

Improving dietary mineral supplies

- 1. Diet diversification
- 2. Food fortification
- 3. Agronomy
- 4. Crop breeding

Health Economic Analyses (based on Disability Adjusted Life Years, DALYs)

Intervention	Cost per DALY saved (US \$)	Notes	Source	
Granular fertiliser	773-6457	sub-Saharan Africa	Joy et al., 2015	
Foliar fertiliser	81-575	sub-Saharan Africa	Joy et al., 2015	
Soil + foliar fertiliser	256-549	Pakistan (Punjab, Sindh)	Joy et al., 2016	
Foliar (w/ pesticide)	41-594	China	Wang et al. 2016	
Crop breeding	0.7-7.3	India (1.1 billion)	Stein et al., 2006	
Supplements	65-2758	Prophylactic, 1-4 yrs	Fink & Heitner, 2014	
Flour fortification	401	Zambia, VA, Fe, Zn	Fielder et al., 2013	

Joy EJM, Stein AJ, Young SD, EL Ander, MJ Watts, Broadley MR (2015). Zinc-enriched fertilisers as a potential public health intervention in Africa. *Plant and Soil*, 389, 1-24.

Diet Diversification

Dietary Zn supply: variable deficiency risks?

Joy EJM, Ander EL, Young SD, Black CR, Watts MJ, Chilimba ADC, Chilima B, Siyame EWP, Kalimbira AA, Hurst R, Fairweather-Tait SJ, Stein AJ, Gibson RS, White PJ, Broadley MR (2014). Dietary mineral supplies in Africa. *Physiologia Plantarum*, 151, 208-229.

Geographical variation in Zn supply within Malawi

Joy EJM, Broadley MR, Young SD, Black CR, Chilimba ADC, Ander EL, Barlow TS, Watts MJ (2015). Soil type influences crop mineral composition in Malawi. *Science of the Total Environment*, **505**, 587-595.

Mineral nutrient supply from surveys (Malawi)

Data from Malawi Third Integrated Household Survey (IHS3)

>12,500 households interviewed in 2010-11

Food consumption module: households asked to recall foods consumed in past 7 d from 112 items (e.g. 'Maize *ufa* refined (fine flour)', 'Dried fish')

Joy EJM, Kumssa DB, Broadley MR, Watts MJ, Young SD, Chilimba ADC, Ander EL (2015). Dietary mineral supplies in Malawi: spatial and socioeconomic assessment. *BMC Nutrition*, **1**, 42.

Mineral nutrient supply from surveys (Malawi)

MODULE G: FOOD CONSUMPTION OVER PAST ONE WEEK

		G01	G02	G03		G04		G05	G06		G07		
	Over the past one week (7 days), did you			How much in t	otal	How much cam	e from	How much did you	How much ca	me	How much car	me	
	or others in your household consume any			did your house	hold	purchases?		spend?	from own-		from glifts and	other	
. ex	[]?			consume in the	e past				production?		sources?		
2 8	INCLUDE FOOD BOTH EATEN	YES1		week									
83	COMMUNALLY IN THE HOUSEHOLD AND	NO2>> NEXT											
ĭ ∎	THAT EATEN SEPARATELY BY INDIVIDUAL	ITEM	ITEM										
A B	HOUSEHOLD MEMBERS.		CODE	QUANTITY	UNIT	QUANTITY	UNIT	MK	QUANTITY	UNIT	QUANTITY	UNIT	
1	Cereals, Grains and Cereal Products					•		•	•				
2	Maize ufa mgaiwa (normai flour)		101										CODES FOR UNIT:
з	Maize ufa refined (fine flour)		102										50 KG. BAG
4	Malze ufa madeya (bran flour)		103										90 KG. BAG
5	Maize grain (not as ufa)		104										PAIL (LARGE)
6	Green maize		105										No. 12 PLATE
7	Rice		106										BUNCH
8	Finger millet (mawere)		107										HEAP 10 BALE
9	Sorghum (mapira)		108										BASKET (DENGU)
10	Pearl millet (mchewere)		109										(SHELLED) 12 BASKET (DENGU)
11	Wheat flour		110										(UNSHELLED) 13 OX-CART
12	Bread		111										(UNSHELLED) 14
13	Buns, scones		112										CUP 16
- 14	Biscuits		113										TIN 17 GRAM 18
15	Spaghetti, macaroni, pasta		114										MILLILITRE 19 TRASPOON 20
16	Breakfast cereal		115										BASIN
17	Infant feeding cereals		116										SATCHET/TUBE22 OTHER (SPECIFY). 23
18	Other (specify)		117										
19	Roots, Tubers, and Plantains												
20	Cassava tubers		201										
21	Cassava flour		202										
22	White sweet potato		203										
23	Orange sweet potato		204										
-24	Irish potato		205										
25	Potato crisps		206										
26	Plantain, cooking banana		207										
27	Cocoyam (masimbi)		208										
28	Other (specify)		209										

Mineral nutrient supply from surveys (Malawi)

Data from Malawi Third Integrated Household Survey (IHS3)

>12,500 households interviewed in 2010-11

Food consumption module: households asked to recall foods consumed in past 7 d from 112 items (e.g. 'Maize *ufa* refined (fine flour)', 'Dried fish')

Enumerators recorded the amount consumed and source (i.e. 'own production', 'bought' or 'gift')

Units include standard metrics (grams, litres etc.) and local units (small plate, large plate, pail etc.)

Food composition data from Joy et al. (2015)

Data integrated at an Extension Planning Area (EPA) level

Joy EJM, Kumssa DB, Broadley MR, Watts MJ, Young SD, Chilimba ADC, Ander EL (2015). Dietary mineral supplies in Malawi: spatial and socioeconomic assessment. *BMC Nutrition*, **1**, 42.

Zn supply in Malawi

Median Zn supply (per AME) = $10 \text{ mg } capita^{-1} \text{ d}^{-1}$ Estimated Average Requirement = $\sim 12 \text{ mg } capita^{-1} \text{ d}^{-1}$

Joy EJM, Kumssa DB, Broadley MR, Watts MJ, Young SD, Chilimba ADC, Ander EL (2015). Dietary mineral supplies in Malawi: spatial and socioeconomic assessment. *BMC Nutrition*, **1**, 42.

Zn supply vs socioeconomic factors in Malawi

Zn supply as proportion of household requirements

Joy EJM, Kumssa DB, Broadley MR, Watts MJ, Young SD, Chilimba ADC, Ander EL (2015). Dietary mineral supplies in Malawi: spatial and socioeconomic assessment. *BMC Nutrition*, **1**, 42.

Original Communication

A High Prevalence of Zinc- but not Iron-Deficiency among Women in Rural Malawi: a Cross-Sectional Study

Edwin W. P. Siyame¹, Rachel Hurst², Anna A. Wawer², Scott D. Young³, Martin R. Broadley³, Allan D. C. Chilimba⁴, Louise E. Ander⁵, Michael J. Watts⁵, Benson Chilima⁶, Jellita Gondwe⁶, Dalitso Kang'ombe⁷, Alexander Kalimbira¹, Susan J. Fairweather-Tait², Karl B. Bailey⁸, and Rosalind S. Gibson⁸

> ¹Department of Home Economics and Human Nutrition, Lilongwe University of Agriculture and Natural Resources, Bunda College Campus, Lilongwe, Malawi ²Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK ³School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK ⁴Ministry of Agriculture, Irrigation and Water Development, Department of Agricultural Research Services, Lunyangwa Research Station, Mzuzu, Malawi ⁵British Geological Survey, Keyworth, Nottingham, UK ⁶Community Health Sciences Unit, Ministry of Health, Lilongwe, Malawi ⁷Nutrition Unit of Ministry of Health, Lilongwe, Malawi ⁸Department of Human Nutrition, University of Otago, Dunedin, New Zealand

> > Received: May 21, 2013; Accepted: August 9, 2013

Agronomy

Health Economic Analyses

Plant Soil (2015) 389:1–24 DOI 10.1007/s11104-015-2430-8

MARSCHNER REVIEW

Zinc-enriched fertilisers as a potential public health intervention in Africa

Edward J. M. Joy • Alexander J. Stein • Scott D. Young • E. Louise Ander • Michael J. Watts • Martin R. Broadley

Received: 28 November 2014 / Accepted: 23 February 2015 / Published online: 8 March 2015 © Springer International Publishing Switzerland 2015

Joy EJM, Stein AJ, Young SD, Ander EL, Watts MJ, Broadley MR (2015). Zinc-enriched fertilisers as a potential public health intervention in Africa. *Plant and Soil*, 389, 1-24.

Fertiliser-use in sub-Saharan African countries with subsidies

Data from NEPAD/IFDC (2013) Practices and policy options for the improved design and implementation of fertilizer subsidy programs in sub-Saharan Africa. <u>https://ifdcorg.files.wordpress.com/2015/01/sp-41_rev.pdf</u> [October 2015]

Increases in grain Zn concentration as a result of Zn fertilisation (literature-survey; Joy et al., 2015)

Joy EJM, Stein AJ, Young SD, Ander EL, Watts MJ, Broadley MR (2015). Zinc-enriched fertilisers as a potential public health intervention in Africa. *Plant and Soil*, 389, 1-24.

Foliar Zn fertiliser application to maize on a smallholder farm, Zimbabwe, 2009 (photo, Prof. Florence Mtambanengwe, University of Zimbabwe)

Health Economic Analyses (based on Disability Adjusted Life Years, DALYs)

Intervention	Cost per DALY saved (US \$)	Notes	Source
Granular fertiliser	773-6457	sub-Saharan Africa	Joy et al., 2015
Foliar fertiliser	81-575	sub-Saharan Africa	Joy et al., 2015
Soil + foliar fertiliser	256-549	Pakistan (Punjab, Sindh)	Joy et al., 2016
Foliar (w/ pesticide)	41-594	China	Wang et al. 2016
Crop breeding	0.7-7.3	India (1.1 billion)	Stein et al., 2006
Supplements	65-2758	Prophylactic, 1-4 yrs	Fink & Heitner, 2014
Flour fortification	401	Zambia, VA, Fe, Zn	Fielder et al., 2013

Joy EJM, Stein AJ, Young SD, EL Ander, MJ Watts, Broadley MR (2015). Zinc-enriched fertilisers as a potential public health intervention in Africa. *Plant and Soil*, 389, 1-24.

Health AND Yield Economic Analyses

Plant Soil DOI 10.1007/s11104-016-2961-7 CrossMark

REGULAR ARTICLE

Valuing increased zinc (Zn) fertiliser-use in Pakistan

Edward J. M. Joy • Waqar Ahmad • Munir H. Zia • Diriba B. Kumssa • Scott D. Young • E. Louise Ander • Michael J. Watts • Alexander J. Stein • Martin R. Broadley

Received: 12 February 2016 / Accepted: 13 June 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com

Joy EJM, Ahmad W, Zia MH, Kumssa DB, Young SD, Watts MJ, Stein AJ, Broadley MR (2016). Valuing increased zinc (Zn) fertiliser-use in Pakistan. *Plant and Soil*, doi: 10.1007/s11104-016-2961-7.

Valuing Zn fertiliser use in Pakistan

Joy EJM, Ahmad W, Zia MH, Kumssa DB, Young SD, Watts MJ, Stein AJ, Broadley MR (2016). Valuing increased zinc (Zn) fertiliser-use in Pakistan. *Plant and Soil*, doi: 10.1007/s11104-016-2961-7.

Wheat is the major crop of Punjab and Sindh Provinces

Area	Cropped area, wheat (Mha)	Wheat production (Mt)	Wheat yield (t ha ⁻¹)
Punjab	7.5	18.4	2.5
Sindh	1.9	3.5	1.9
Pakistan	~10	~25	~2.7

Source. PBS Agriculture Census 2010 (p. 36); N.B. 90/97% of wheat is irrigated in Punjab/Sindh (p.39)

Industry estimates of Zn-use in Pakistan

Agricultural Zn-use baselines in Pakistan

Based on rapid farmer surveys

Farmers surveyed in Punjab (n=1193), and Sindh (n=1338) Provinces

Farmers asked about their crop-specific fertiliser-usage and yields wheat, rice, cotton, sugarcane, maize, 'other'

Only data for wheat are used in this study

Rapid farmer survey in Punjab and Sindh

Area	Farmers surveyed	
Punjab	1,193	
Sindh	1,338	
Combined	2,531	

Source. W. Ahmad et al. (2015), unpublished survey data.

Rapid farmer survey in Punjab and Sindh

Yield-response of wheat to N (urea) and P_2O_5 (di-ammonium phosphate, DAP)

Joy EJM, Ahmad W, Zia MH, Kumssa DB, Young SD, Watts MJ, Stein AJ, Broadley MR (2016). Valuing increased zinc (Zn) fertiliser-use in Pakistan. *Plant and Soil*, doi: 10.1007/s11104-016-2961-7.

Zn fertilisers are currently used by a proportion of (progressive) farmers

Area	Farmers surveyed	Using Zn fertilisers	Using Zn fertilisers? (%)
Punjab	1,193	172	14
Sindh	1,338	310	23
Combined	2,531	482	19

Yield response to Zn fertiliser

Assumptions used to value Zn fertiliser-use:

- 1. Baseline Zn-use 7.3 kt y⁻¹ at 4.8 kg ha⁻¹ (ZnSO₄.H₂O eq. @ 33% Zn)
- 2. Constant granular:foliar ratio of 0.7:0.3
- 3. Wheat support price: \$312 USD t⁻¹
- 4. Cost of $ZnSO_4$.H₂O: \$1600 USD t⁻¹
- 5. Scenario: \uparrow Zn fertilisers are distributed to 100% wheat in Punjab, Sindh
- 6. Benefit:Cost Ratios (BCRs) estimated for ↑ yield
- Health economic impact of ↓ in DALYs lost, due to an ↑ in grain Zn concentration from national baseline surveys of wheat

Assumptions used to value Zn fertiliser-use:

- 8. 4.8 kg ha⁻¹ soil-Zn, \uparrow grain Zn by 19% to 29.6 mg kg⁻¹
- 9. 4.8 kg ha⁻¹ foliar-Zn, \uparrow grain Zn by 63%, to 40.6 mg kg⁻¹
- 10. Value of 1 DALY = x * Gross National Income-PPP, i.e. x * I\$ 5,110 PPP=parity purchasing power: I\$ based on 2011 International Comparison Program*
- 11. BCRs for \uparrow yield and \downarrow in DALYs lost are additive
- 12. No discounting

Valuing Zn fertiliser use in Pakistan (Zn supply, yield)

Valuing Zn fertiliser use in Pakistan (Zn supply, yield)

Valuing Zn fertiliser use in Pakistan (yield + DALYs)

Cost per DALY saved:

Punjab = \$392-549 USD Sindh = \$256-349 USD

Health Economic Analyses (based on Disability Adjusted Life Years, DALYs)

Intervention Cost per DALY saved (US \$)		Notes	Source	
Granular fertiliser	773-6457	sub-Saharan Africa	Joy et al., 2015	
Foliar fertiliser	81-575	sub-Saharan Africa	Joy et al., 2015	
Soil + foliar fertiliser	256-549	Pakistan (Punjab, Sindh)	Joy et al., 2016	
Foliar (w/ pesticide)	41-594	China	Wang et al. 2016	
Crop breeding	0.7-7.3	India (1.1 billion)	Stein et al., 2006	
Supplements	65-2758	Prophylactic, 1-4 yrs	Fink & Heitner, 2014	
Flour fortification	401	Zambia, VA, Fe, Zn	Fielder et al., 2013	

Joy EJM, Stein AJ, Young SD, EL Ander, MJ Watts, Broadley MR (2015). Zinc-enriched fertilisers as a potential public health intervention in Africa. *Plant and Soil*, 389, 1-24.

Health Economic Analyses (based on Disability Adjusted Life Years, DALYs)

Intervention	Cost per DALY saved (US \$)	Notes	Source
Granular fertiliser	773-6457	sub-Saharan Africa	Joy et al., 2015
Foliar fertiliser	81-575	sub-Saharan Africa	Joy et al., 2015
Soil + foliar fertiliser	256-549	Pakistan (Punjab, Sindh)	Joy et al., 2016
Foliar (w/ pesticide)	41-594	China	Wang et al. 2016
Crop breeding	0.7-7.3	India (1.1 billion)	Stein et al., 2006
Supplements	65-2758	Prophylactic, 1-4 yrs	Fink & Heitner, 2014
Flour fortification	401	Zambia, VA, Fe, Zn	Fielder et al., 2013

Joy EJM, Stein AJ, Young SD, EL Ander, MJ Watts, Broadley MR (2015). Zinc-enriched fertilisers as a potential public health intervention in Africa. *Plant and Soil*, 389, 1-24.

Valuing Zn fertiliser use in Pakistan (yield + DALYs)

Cost per DALY saved: Punjab = \$392-549 USD Sindh = \$256-349 USD

Conservative BCRs

Used 24% Zn deficiency prevalence, likely to be >40% Zn fertiliser effects can persist for 3-4 subsequent crops

Strong drivers for private and public investment in Zn fertilisers

Blending Zn and granular fertiliser in Punjab, Pakistan (photo, Dr Munir Zia, Fauji Fertiliser Company)

DAL

ولیت آف ہوناش آئے GUARANTEED ANAIL K 20 : 60% 50 K G.NET

Valuing Zn fertiliser use in Pakistan (yield + DALYs)

Cost per DALY saved: Punjab = \$392-549 USD Sindh = \$256-349 USD

Conservative BCRs

Used 24% Zn deficiency prevalence, likely to be >40% Zn fertiliser effects can persist for 3-4 subsequent crops

Strong drivers for private and public investment in Zn fertilisers

Other soil improvements will increase yield further *P, K, and B fertilisers are under-utilised in Pakistan Many saline/sodic soils*

Breeding for increased grain Zn concentration adds further 'value'

Funding Acknowledgements

Funding Acknowledgements

FERTBIO 2016

"RUMO AOS NOVOS DESAFIOS" 16 a 20 de Outubro Centro de Convenções de Goiânia - GO

Using innovative techniques, John Innes Centre scientists are studying model plant species to analyse the impacts of climate change on biodiversity and agriculture. For world-class science, choose the UK.