

Análise de Solo Comparativa entre Sistema Silvipastoril, Rotacional e Extensivo, no Sudoeste do Maranhão⁽¹⁾

<u>Maria de Fátima de Castro Oliveira</u>⁽²⁾; Ricardo Welder Duarte Marinho⁽³⁾; Wilson Araújo da Silva⁽⁴⁾; Rafael Ferreira Costa⁽³⁾; Kadja da Silva Cerqueira ⁽⁵⁾; Wemison Sousa Lima⁽³⁾.

(1) Trabalho executado com recursos da FAPEMA.

RESUMO: Os sistemas silvipastoris têm se mostrado uma alternativa de maior sustentabilidade entre as práticas agropecuárias mais utilizadas. Diversos, trabalhos mostram a melhor engorda do gado em sistemas como este, porem e preciso analisar se há variação dos nutrientes do solo, quando comparado aos sistemas comumente empregados. Desta forma avaliou-se o efeito químico do componente arbóreo sobre o solo por meio da avaliação de atributo químico em um Latossolo. O experimento foi conduzido de abril a outubro de 2013 na fazenda Monalisa em São Francisco do Brejão, MA (5° 09' 38" S; 47° 23' 57" O). Foram analisadas alterações nos dados químicos do solo em cinco pontos amostrais em duas profundidades: 0-20 cm; 20-40 cm, com quatro repetições para atributo químicos, respectivamente, nos sistemas rotacional, extensivo e silvipastoril. Os atributos químicos do solo dos sistema silvipastoril que expressaram melhor visualização na fertilidade do solo foram a MO e P, foi encontrado também solo menos ácido e assim com os nutrientes mais disponíveis para as plantas. O ganho de observados no sistema silvipastoril foi possivelmente devido a presença de árvores nesse sistema. Assim, além de proporcionar sombra para o fator animal o sistema favoreceu o ganho de nutrientes, quando comparado aos outros sistemas usuais, observados pela presença de matéria orgânica (MO) e fósforo (P).

Termos de indexação: Fósforo; matéria orgânica do solo; sustentabilidade.

INTRODUÇÃO

O Sistema Silvipastoril (SSP) é um sistema alternativo e sustentável, integrando lavoura, pecuária e floresta. Esse sistema está sendo implantado nas propriedades rurais, principalmente por pequenos produtores, para aumentar o rendimento produtivo e bem estar animal.

Segundo Young et al. (1991), as principais interações dos sistemas silvipastoris com o ambiente referem-se ao microclima (radiação solar, umidade do ar, temperatura e vento) e ao solo (erosão e fertilidade). As árvores estabilizam o microclima, protegem os animais do calor e frio intensos, propiciando a manutenção do conforto térmico, com reflexos positivos na produtividade do rebanho (Nicodemo, 2005).

Observando-se que esse sistema mostra-se uma alternativa sustentável à culturas agrícolas, neste trabalho, buscou-se analisar a influência de tal sistema sobre a variação dos nutrientes do solo.

MATERIAL E MÉTODOS

O trabalho foi desenvolvido entre os meses de abril de 2013 e outubro de 2013 na fazenda Monalisa, localizada em São Francisco do Brejão, MA (5° 09' 38" S; 47° 23' 57" O). Os dados climatológicos mensais referentes à temperatura mínima e máxima, umidade relativa do ar e precipitação pluvial durante o período experimental foi fornecido por uma mini-estação climatológica 2900ÉT WatchDog modelo (Spectrum Technologies, Inc. Illinois, U.S.A.). O experimento foi implantado em área formada por braquiária em Latossolo Vermelho (Embrapa, 2006) ambos de textura franco arenosa. A análise de solo do experimento de campo foi realizada através da BNG metodologia do (balanço nutricional georreferenciado). É um estudo mais detalhado das condições de fertilidade do solo, através da metodologia de balanço nutricional, amostragens georreferenciadas por zonas manejo. Com o auxílio do equipamento mapeamento para análise de solo (receptor trimble SD) definiu-se os pontos georreferenciados que foram gerados a partir de imagens de satélite.

Tratamentos e amostragens

As coletas foram feitas em cinco pontos amostrais em duas profundidades: 0-20 cm; 20-40

⁽²⁾ Discente do curso de Engenharia Florestal – Universidade Estadual do Maranhão, Centro de Estudos Superiores de Imperatriz; Imperatriz, MA; fatimaflorestal@hotmail.com; (3) Discente do curso de Engenharia Agronômica – Universidade Estadual do Maranhão, Centro de Estudos Superiores de Imperatriz; (4) Prof. Doutor do curso de Engenharia Agronômica - Universidade Estadual do Maranhão, Centro de Estudos Superiores de Imperatriz; (5) Discente do curso de Engenharia Florestal – Universidade Estadual do Maranhão, Centro de Estudos Superiores de Imperatriz

cm; com quatro e cinco repetições para atributo químicos. Para os atributo químicos, foram determinados valores de pH e teores de P, K, Ca, Mg, MO, H+AI, AI, CTC, SB, V. A Análise química e física do solo foi realizada no laboratório da Universidade Estadual do Maranhão – UEMA.

Análise estatística

O delineamento utilizado foi o inteiramente casualizado (DIC). Para determinação da massa da forragem foi utilizado o esquema fatorial 3x2, sendo constituído por três tratamentos (sistema silvipastoril, sistema rotacionado com regeneração nativa e sistema extensivo) e duas épocas (chuvosa e seca) com quinze repetições.

O software estatístico utilizado na análise estatística foi o Assistat versão 7.6 beta. Os dados foram submetidos ao teste de normalidade (teste de Kolmogorov-Smirnov, Lilliefors, Cramér-von Mises e Watson). Posteriormente, foi submetida à Anova. A comparação de média dos tratamentos foi realizada pelo teste de Tukey, ao nível de 5% de probabilidade.

RESULTADOS E DISCUSSÃO

Como O sistema silvipastoril, devido à presença da leucena e outras árvores como componente arbóreo, têm um maior volume de solo explorado, já que exploram profundidades de solo diferentes. Além disso, a leucena é uma leguminosa arbórea, e pode refletir em diversidade biótica e ciclagem de nutrientes. Para Buresh e Tian (1997), em sistemas silvipastoris, as espécies arbóreas têm o potencial de melhorar o solo por numerosos processos. Podem influenciar na quantidade e disponibilidade de nutrientes dentro da zona de atuação do sistema radicular das culturas associadas, principalmente pela possibilidade de recuperar nutrientes abaixo do sistema radicular das pastagens e reduzir perdas por lixiviação e erosão, aumentando assim a disponibilidade de nutrientes pela maior quantidade de matéria orgânica depositada no solo e pelo processo de ciclagem e nutrientes (Buresh & Tian, 1997).

Na análise química de solo (**Tabela 1**), pode-se observar que na profundidade 20-40cm há maior teor de matéria orgânica. O pH também foi considerado médio para culturas perenes (IAC,1997) no sistema silvipastoril, tornando assim, o solo menos ácido e mais disponíveis os nutrientes para as plantas. De acordo com Gliessman (2005), a presença de um nutriente não necessariamente indica que ele esteja disponível para as plantas,

diversos fatores, incluindo o pH, determinam a disponibilidade real de nutrientes.

Outro aspecto a ser considerado para explicar os maiores valores da massa da forrageira é o maior teor de fósforo no sistema silvipastoril nas profundidades 20-40 cm. Para Cecato et al. (2004), um dos maiores problemas no estabelecimento e na manutenção de pastagens nos solos brasileiros reside nos níveis extremamente baixos de fósforo no solo. Segundo Fonseca et al. (2000), o fósforo além de sua importância na avaliação do valor alimentício de uma forrageira, é também um nutriente essencial ao crescimento das plantas e, portanto, limitante da produção.

A prática mostra que, mesmo em solos férteis, em comunidades vegetais de elevada densidade, caracterizadas por intensa competição nutrientes a deficiência nutricional pode ser atingida. A maioria da agricultura mundial está ocorrendo em solos com baixa fertilidade em P e outros nutrientes, acrescente-se a isso os efeitos de alguns fatores edáficos como elevada acidez dos solos (pH< 5,5). solos ácidos, comuns em solos muito intemperizados dos trópicos sub-trópicos. е caracterizam-se por deficiência de P, baixa disponibilidade de bases, principalmente de Cálcio e Magnésio (Lynch et al. 2004).

Em relação à física do solo, foi observado que nas três áreas observa-se textura franco arenosa (**Tabela 2**), contribuindo para resultados mais significativos no SSP.

CONCLUSÕES

O presente trabalho mostra os diversos benefícios do emprego de sistemas silvipastoris, que além de promover o bem estar animal, influencia na disponibilidade de nutrientes, através do sistema de ciclagem de nutrientes promovido pelo componente arbóreo.

Além de concluir que tais sistemas são importantes para a conservação do solo, uma vez que foram encontrados quantidades superiores de matéria orgânica e fósforo.

AGRADECIMENTOS

Agradecemos à Deus, à Fapema, ao professor Wilson Araújo por sua orientação e ao CBCS por nos dá a oportunidade de submeter este trabalho.

REFERÊNCIAS

a. Periódicos:

BURESH, R.J. & TIAN, G. Soil improvement by in subsaharam Africa. Agroforestry Systems, v.38, n.1-3, p. 51-76, 1997.

CECATO, U. & PEREIRA, L.A.F. et al. Influência das adubações nitrogenada e fosfatada sobre a composição químicobromatológica do capim Marandu (Brachiaria brizantha (Hochst) Stapf cv. Marandu). Acta Scientiarum, v.26, n.3, p.409-416, 2004.

FONSECA, D.M. & GOMIDE, J.A et al. Absorção, utilização e níveis críticos internos de fósforo e perfilhamento em Adropogon gayanus e Panicum maximum. Revista Brasileira de Zootecnia, v.29, n.6, p.1918-1929, 2000.

LYNCH, J.P.; CLAIR, S.B. Mineral stress: the missing link in understanding how global climate will affect plants in real world soils. Field crop research, v. 90, p. 101-115, 2004.

NICODEMO, M.L.F. Sistemas silvipastoris: árvores e pastagens, uma combinação possível. In: ZOOTEC – PRODUÇÃO ANIMAL E RESPONSABILIDADE, 2005. Campo Grande. Campo Grande, 2005.

YOUNG, I.M. & MULLINS, C.E.; et. al. Hardsetting and structural regeneration in two unstable Britsh sandy loams and their influence on crop growth. Soil & Tillage Research, v.19, p.387, 1991.

b. Livro:

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. 2.ed. Rio de Janeiro, 2006. 302p

GLIESSMAN, Stephen R. Agroecologia: processos ecológicos em agricultura sustentável. Porto Alegre: Editora da UFRGS, 2005. 653 p.

IAC - INSTITUTO AGRONÔMICO DE CAMPINAS. Recomendações de adubação e calagem para o Estado de São Paulo. Campinas, IAC, 2ª ed., 1997. 285 p. (Boletim 100).

Tabela 1 - Resultado da análise química do solo, de amostras retiradas da profundidade de 0-20cm e 20-40 cm no experimento.

Tratamento	M.O.	рН	Р	Ca	Mg	K	H+AI	SB	CTC	V
Tratamento	(g/dm³)	(CaCl ₂)	(Mg/dm³)			(m	mol _c dm ⁻³)			%
SSP (0-20cm)	17	5,1	3	15	5	2	19	24,5	43,5	56
SSP (20-40cm)	14	5,4	41	20	8	1,6	12	31,3	49,3	63,5
ROT (0-20cm)	14	4,8	2	13	3	0,9	22	17,5	39,5	44
ROT (0-40cm)	10	4,9	2	12	3	0,5	22	16	38,0	42,1
EXT (0-20cm)	10	5,0	15	14	7	0,6	18	26,9	44,9	60
EXT (20-40cm)	8	5,2	7	13	2	0,9	17	16,5	33,7	49,6

M.O.= Matéria orgânica; V= Saturação de bases; SB= Soma de bases; CTC= Capacidade de Troca de Cátions; pH=7,0; SSP= Silvipastoril; ROT=Rotacionado; EXT=Extensivo

Tabela 2 - Resultado da análise textural do solo, de amostras retiradas da profundidade de 0-20 cm e 20-40 cm no experimento.

		Composição Gi			
Tratamento	Areia Grossa	Areia Fina	Silte	Argila	Textura
		g Ko			
SSP (0-20cm)	40	40	6	14	Franco Arenoso
SSP (20-40cm)	38	38	10	14	Franco Arenoso
ROT (0-20cm)	36	45	5	14	Franco Arenoso
ROT (0-40cm)	30	42	16	12	Franco Arenoso
EXT (0-20cm)	40	36	14	10	Franco Arenoso
EXT (20-40cm)	37	42	11	10	Franco Arenoso

SSP= Silvipastoril; ROT=Rotacionado; EXT=Extensivo