

Índices de conteúdo de clorofila em milho sob diferentes tratamentos de adubação nitrogenada

<u>Jonas Sousa Santana</u>⁽¹⁾; Elaine Heberle⁽²⁾; Joaquim Martins de Sousa Filho⁽³⁾; Daniela Vieira Chaves⁽⁴⁾; Fábio da Silva Leite⁽⁵⁾; Fabio Mielezrski⁽⁶⁾.

⁽¹⁾Estudante de Engenharia Agronômica; Bolsista PIBIEX Universidade Federal do Piauí - UFPI/Campus Professora Cinobelina Elvas - CPCE; Bom Jesus, Piauí; jonassentinela@outlook.com; ⁽²⁾Dra. em Fitotecnia; Bolsista DCR FAPEPI/CNPq; UFPI/CPCE; elaine.heberle@gmail.com; ⁽³⁾Estudante de Engenharia Agronômica; Bolsista PIBIC/CNPq; UFPI/CPCE; joaquim1994agro@hotmail.com; ⁽⁴⁾Professora; UFPI/CPCE; chavesdv@gmail.com; ⁽⁵⁾Estudante de Engenharia Agronômica; UFPI/CPCE; fabiosilvaleite2010@gmail.com; ⁽⁶⁾Professor; UFPI/CPCE; fabiom@ufpi.edu.br.

RESUMO: O nitrogênio é integrante da molécula de clorofila, fundamental para a fotossíntese. Objetivouse avaliar o efeito de tratamentos de adubação nitrogenada em cobertura com diferentes fontes, doses e épocas de aplicação sobre os índices de conteúdo de clorofila na cultura do milho, entre os estádios fenológicos V12 a R4. Foram testados: T1 - 200 kg Uréia branca/ha em V3; T2 - 300 kg Uréia branca/ha em V3; T3 - 100 + 100 kg Uréia branca/ha em V3 + V8; T4 - 150 +150 kg Uréia branca/ha em V3 + V8; T5 - 200 kg Uréia revestida/ha em V3; T6 - 300 kg Uréia revestida/ha em V3; T7 - 150 + 150 kg Uréia revestida/ha em V3 + V8; T8 - Testemunha. Avaliou-se os índices de conteúdo de clorofila a, b e total nos estádios V12, VT, R1, R3 e R4. Seguiu-se o delineamento em blocos casualizados, com quatro repetições. Os resultados foram submetidos à análise de variância e as médias comparadas pelo teste de Tukey (p≥0,05). O índice de clorofila a foi superior no estádio R4 com T6. A aplicação de uréia branca em V3 reduziu os índices de clorofila b em VT e R4. Os tratamentos igualaram-se para a clorofila total durante o período, exceto a testemunha em R4. A adubação nitrogenada proporciona maiores índices de conteúdo de clorofila no estádio de enchimento de grãos. Não há diferença entre a utilização de uréia revestida ou branca, dose e época aplicação sobre os índices de conteúdos de clorofilas no estádio mais avançado de desenvolvimento do milho.

Termos de indexação: Zea mays L., nitrogênio, fotossíntese.

INTRODUÇÃO

O milho (*Zea mays* L.) é uma das culturas mais cultivadas no Brasil, apresenta alto potencial produtivo e boa resposta a aplicação de insumos agrícolas, especialmente a fertilizantes nitrogenados que podem render altas produtividades (Cantarella & Duarte, 2004).

Fatores genéticos e ambientais, como luz, temperatura, CO₂, disponibilidade hídrica e status

nutricional são determinantes na eficiência fotossintética do milho. O nitrogênio (N) é um dos nutrientes requeridos em maior quantidade pela grande maioria das culturas vegetais, e também é o que geralmente mais aumenta o custo de produção (Silva et al., 2005).

O conteúdo de clorofila demonstra-se um importante parâmetro na avaliação do estado nutricional das plantas, podendo ser utilizado para o monitoramento do nitrogênio para a cultura (Durães et al., 2005), visto que a quantidade dos pigmentos fotossintéticos correlacionam-se positivamente com o nível de nitrogênio (Argenta et al., 2001). Segundo Chapman & Barreto (1997), 50 a 70% do N total das folhas é integrante de enzimas associadas aos cloroplastos. Portanto, este elemento influencia diretamente o metabolismo da planta, por atuar também na biossíntese de proteínas, enzimas, coenzimas, ácidos nucléicos e citocromos (Gross et al., 2006).

Para a adubação nitrogenada, a uréia branca é a mais utilizada e com menor custo, porém apresenta grande perda por volatilização. Assim, o desenvolvimento de fertilizantes revestidos, que permitem lenta disponibilização dos nutrientes pode ser uma alternativa viável aos produtores, tendo em vista a menor necessidade de parcelamento da adubação de cobertura e a redução das doses pela menor perda por volatilização, entre outros (Trenkel, 2010).

Porém, a uréia revestida tem custo superior ao da uréia comum e sua eficiência depende de vários fatores, ainda não totalmente elucidados e que parecem estar fortemente ligados as condições edafoclimáticas da região produtora.

Assim, objetivou-se avaliar o efeito de tratamentos de adubação nitrogenada em cobertura com diferentes fontes, doses e épocas de aplicação sobre os índices de conteúdo clorofila na cultura do milho, entre os estádios fenológicos V12 a R4.

MATERIAL E MÉTODOS

O experimento foi realizado na Fazenda São João, localizada na Serra do Pirajá, município de

Currais, Piauí (Latitude 9°16'78" S, Longitude 44°44'25" W e altitude de 628 metros); durante o período de março a maio de 2015.

O clima da região é do tipo Aw, segundo a classificação climática global de Köppen, com duas estações bem definidas, sendo uma seca (de maio a setembro) e outra chuvosa (de outubro a abril). A temperatura média anual é de 29°C e a precipitação média anual é de 944,4 milímetros (IBGE, 2001). O solo é do tipo arenoso e com pH natural muito baixo (Reynolds et al., 2009).

Para implantação da cultura, utilizaram-se sementes de milho da cultivar AG 8088 PRO, sendo a semeadura realizada mecanicamente com espaçamento de 0,45 cm entre linhas e população de 60.000 plantas/ha.

Os tratos culturais para o controle de plantas daninhas, pragas e doenças foram adotados e executados sempre que necessário, de acordo com o utilizado pelos produtores da cultura na região.

Os tratamentos de adubação nitrogenada foram aplicados manualmente, a lanço, e foram assim constituídos:

T1: 200 kg Uréia branca (45% N)/ha aplicados no estádio fenológico V3 (vegetativo com 3 folhas);

T2: 300 kg Uréia branca/ha aplicados em V3;

T3: 100 + 100 kg Uréia branca/ha aplicados em V3 + V8 (estádio vegetativo com 8 folhas), respectivamente;

T4: 150 +150 kg Uréia branca/ha aplicados em V3 + V8, respectivamente;

T5: 200 kg Uréia revestida (43,18% N)/ha aplicados em V3;

T6: 300 kg Uréia revestida/ha aplicados em V3;

T7: 150 + 150 kg Uréia revestida/ha aplicados em V3 + V8, respectivamente; e

T8: Testemunha (sem adubação de cobertura).

Foram avaliados os índices de conteúdo de clorofila a, b e clorofila total, através de determinação direta com equipamento clorofilômetro (Falker®, Brasil), nos estádios fenológicos V12 (estádio vegetativo com 12 folhas), VT (pendoamento), R1 (florescimento), R3 (grão leitoso) e R4 (grão pastoso) (Fornasieri Filho, 2007).

Seguiu-se o delineamento em blocos casualizados, com quatro repetições e cinco réplicas. As unidades experimentais foram constituídas por dez linhas de plantas com comprimento de 5 metros.

Os resultados foram submetidos à análise de variância pelo teste F e as médias comparadas pelo teste de Tukey (p≥0,05), utilizando-se o pacote de dados estatísticos do programa Assistat Versão 7.7 Beta (Silva, 2015).

RESULTADOS E DISCUSSÃO

Os valores médios dos índices de conteúdo de clorofila *a*, *b* e total são apresentados na **tabela 1**.

Observa-se que o conteúdo de clorofila a diferiu entre os tratamentos somente no estádio fenológico R4 (grão pastoso), onde o tratamento com aplicação de 300 kg uréia revestida/ha em dose única no estádio V3 (T6) destacou-se por proporcionar maiores valores desta variável, e a testemunha com os menores índices. Os demais apresentaram resultados semelhantes e intermediários.

Os menores índices de clorofila a, observados na testemunha, indicam que ocorreu uma redução da disponibilidade deste nutriente no estádio R4. Enquanto que a aplicação da dose de 300 kg uréia V3 proporcionou revestida/ha em disponibilidade de N por período mais prolongado, evidenciado durante o enchimento de grãos (R4), podendo ser atribuído à liberação mais lenta do N contido no produto. No entanto, isso não é confirmado pelos outros tratamentos, onde não doses houve diferença entre fontes, modos/épocas de aplicação.

As clorofilas são fundamentais para a fotossíntese por serem responsáveis pela captura da luz, sendo a clorofila a o principal pigmento presente no complexo coletor de luz para as reações fotoquímicas (Gross et al., 2006). Sua formação depende da disponibilidade de N nas partes verdes, especialmente folhas.

Para os índices de conteúdo de clorofila *b*, constataram-se diferenças somente nos estádios VT e R4, onde a testemunha apresentou novamente os índices mais baixos. Os tratamentos T2 e T4, com aplicação de 300 kg uréia branca/ha, aplicados em dose única em V3 ou parcelada em V3 e V8 apresentaram valores intermediários no VT. E os tratamentos T1 e T2, com aplicação em dose única em V3 de 200 ou 300 kg uréia branca/ha, respectivamente, foram os que ficaram com valores intermediários de clorofila *b* no estádio R4.

Considerando-se a uréia comum, a aplicação parcelada em cobertura foi mais eficiente para manter o índice de clorofila *b* mais elevado no estádio mais avançado (R4), independente da dose. E a aplicação da mesma, parcelada em V3 + V8, teve resultados iguais à aplicação da uréia revestida, independente da dose e forma de aplicação.

O índice de conteúdo de clorofila total, determinado nas folhas de milho AG 8088 PRO, não diferiu entre os tratamentos testados em nenhum dos estádios fenológicos avaliados, exceto a testemunha, que apresentou o menor índice na avaliação realizada no estádio de grãos pastosos (R4), diferindo dos demais tratamentos que receberam a adubação nitrogenada.

O índice de clorofila é muito importante para a produtividade do milho, pois a constituição dos grãos está diretamente associada com a translocação de açúcares da fotossíntese e de N dos órgãos vegetativos para os órgãos reprodutivos (Karlen et al., 1988).

Todos os tratamentos de adubação nitrogenada testados, indiferente da fonte, dose e modo/época de aplicação, mantiveram os índices de clorofila total próximos a 60 no estádio de enchimento de grãos, oque não foi verificado no tratamento sem adubação.

Valderrama et al. (2011), em experimento com milho em Cerrado com diferentes fontes e doses de adubação nitrogenada, também não verificaram diferenças entre os tratamentos sobre o teor de N foliar, índice de clorofila foliar, componentes de produção e produtividade. Os autores concluíram que a utilização de uréia revestida tem resultados semelhantes à uréia convencional quando utilizada nas condições edafoclimáticas de Cerrado.

Ainda, de acordo com Chitolina (1994), os fertilizantes revestidos dependem de água e da temperatura do solo (ótima 21°C), para a adequada liberação dos nutrientes às plantas. É provável que a uréia revestida não tenha sido eficaz por se tratar de condições de Cerrado, devido as altas temperaturas.

CONCLUSÕES

A adubação nitrogenada em cobertura proporciona maior índice de conteúdo de clorofila na cultura do milho no estádio de enchimento de grãos (R4).

A uréia branca e a revestida tem efeitos semelhantes sobre os índices de conteúdo de clorofilas, com pequenos variações, devido a dose e época de aplicação, durante o as fases mais jovens da cultura, mas semelhantes nos estádios mais avançados.

AGRADECIMENTOS

Os autores agradecem ao CNPq, a FAPEPI, a UFPI, ao Grupo YBYAgro e a Fazenda São João.

REFERÊNCIAS

ARGENTA, G.; SILVA, P. R. F. da; BARTOLINI, C. G. et al. Relação da leitura do clorofilômetro com os teores de clorofila extraível e nitrogênio na folha de milho. **Revista Brasileira de Fisiologia Vegetal**, Lavras, v. 13, n. 2, p. 158-167, 2001.

CANTARELLA, H. & DUARTE, A. P. Manejo da fertilidade do solo para cultura do milho. In: GALVÃO, J. C. C. & MIRANDA, G. V. (ed). **Tecnologia de produção**

de milho. Viçosa – MG: Universidade Federal de Viçosa, 2004. p. 139-182.

CHAPMAN, S. C. & BARRETO, H. J. Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. **Agronomy Journal**, Madison, v. 89, n. 4, p. 557-562, 1997.

CHITOLINA, J. C. Fertilizantes de lenta liberação de N: conceitos. Uréia coberta com enxofre. Piracicaba: ESALQ/USP, 1994. 16 p.

DURÃES, F. O. M.; MAGALHÃES, P. C.; GAMA, E. E. G. et al. Caracterização fenotípica de linhagens de milho quanto ao rendimento e à eficiência fotossintética. **Revista Brasileira de Milho e Sorgo**, Sete Lagoas, v. 4, n. 3, p. 355-361, 2005.

FORNASIERI FILHO, D. **Manual da cultura do milho**. Jaboticabal: Funep, 2007. 576p.

GROSS, M. R.; VON PINHO, R. G.; BRITO, A. H. Adubação nitrogenada, densidade de semeadura e espaçamento entre fileiras na cultura do milho em sistema plantio direto. **Ciência e Agrotecnologia**, Lavras, v. 30, n. 3, p. 387-393, 2006.

IBGE – Instituto Brasileiro de Geografia e Estatística. **Censo Agropecuário. 2011**. Disponível em : http://www.sidra.ibge.gov.br/bda/acervo/acervo2.asp?e=v&p=CA&z=t&o=11. Acesso em 11 de Jun de 2015.

KARLEN, J. R.; FLANNERY, R. L.; SADLER, 8.E. J. Aerial accumulation and partitioning of nutrients by corn. **Agronomy Journal**, Madison, v. 80, p. 232-242, 1988.

REYNOLDS, W. D.; BOWMAN, B. T.; DRURY, C. F.; TAN, C. S.; LU, X. Indicators of good soil physical quality: density and storage parameters. **Geoderma**, v.110, p. 131-146, 2002.

SILVA, C. E.; BUZETTI, S.; GUIMARÃES, L. G. et al. Doses e épocas de aplicação de nitrogênio na cultura do milho em plantio direto sobre Latossolo vermelho. **Revista Brasileira de Ciência do Solo**. v. 29, p. 353-362, 2005.

SILVA, A. S. F. **ASSISTAT - Assistência Estatística -** Universidade Federal de Campina Grande - UFCG - Campus de Campina Grande-PB. 2015.

TRENKEL, M. E. Slow – and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Efficiency in Agriculture. Second edition, IFA, Paris, France, 2010.

VALDERRAMA, M.; BUZETTI, S.; BENETT, C. G. S.; ANDREOTTI, M.; TEIXEIRA FILHO, M. C. M. Fontes e doses de NPK em milho irrigado sob plantio direto. **Pesquisa Agropecuária Tropical**, v. 41, n. 2, p. 254-263, 2011.

Tabela 1 - Valores médios dos índices de conteúdo de clorofila a, b e clorofila total em folhas de milho cultivar AG 8088 PRO submetidos a diferentes tratamentos de adubação nitrogenada.

	Estádio fisiológico				
Tratamento	V12	VT	R1	R3	R4
	Clorofila a				
T1	43,44 a*	40,15 a	40,45 a	39,78 a	40,95 ab
T2	44,64 a	38,83 a	38,62 a	41,02 a	40,79 ab
Т3	45,82 a	40,17 a	40,17 a	39,01 a	40,03 ab
T4	45,00 a	40,10 a	40,09 a	40,06 a	43,00 ab
Т5	43,90 a	37,73 a	38,13 a	39,71 a	40,30 ab
Т6	45,06 a	40,74 a	40,90 a	39,79 a	43,98 a
T7	45,82 a	39,92 a	39,92 a	40,09 a	40,35 ab
T8	46,14 a	39,45 a	39,44 a	39,24 a	37,88 b
DMS	3,75	4,47	4,44	3,43	5,60
CV (%)	3,51	4,76	4,71	3,63	5,43
	Clorofila b				
T1	19,51 a	17,34 a	19,51 a	16,61 a	15,16 ab
T2	20,41 a	16,46 ab	20,41 a	18,25 a	15,82 ab
Т3	21,48 a	16,98 a	21,48 a	16,90 a	16,43 a
T4	22,31 a	15,96 ab	22,31 a	16,97 a	16,61 a
T5	20,23 a	16,78 a	20,23 a	17,47 a	16,82 a
Т6	21,00 a	16,91 a	21,00 a	16,50 a	16,07 a
T7	21,68 a	16,78 a	21,68 a	24,33 a	16,80 a
T8	19,20 a	13,89 b	19,20 a	16,16 a	13,32 b
DMS	4,34	2,77	4,34	10,67	2,56
CV (%)	8,83	7,13	8,83	25,14	6,80
	Clorofila total				
T1	62,95 a	57,50 a	57,65 a	56,39 a	56,11 a
T2	65,06 a	55,30 a	55,09 a	59,27 a	56,61 a
Т3	67,31 a	57,15 a	57,04 a	55,91 a	56,46 a
T4	67,31 a	56,06 a	56,06 a	57,03 a	59,61 a
T5	64,13 a	54,51 a	54,91 a	57,18 a	57,13 a
T6	66,06 a	57,65 a	55,24 a	56,29 a	60,05 a
T7	67,50 a	56,70 a	56,66 a	64,42 a	57,16 a
Т8	65,34 a	53,34 a	53,31 a	55,40 a	49,28 b
DMS	5,62	5,84	7,32	11,40	5,37
CV (%)	3,61	4,39	5,53	8,33	4,00

*Médias seguidas por uma mesma letra na coluna não diferem entre si pelo teste de Tukey (p≥0,05). Tratamentos: T1 – 200 kg Uréia branca/ha em V3; T2 – 300 kg Uréia branca/ha em V3; T3 – 100 + 100 kg Uréia branca/ha em V3 + V8; T4 – 150 + 150 kg Uréia branca/ha em V3 + V8; T5 – 200 kg Uréia revestida/ha em V3; T6 – 300 kg Uréia revestida/ha em V3; T7 – 150 + 150 kg Uréia revestida/ha em V3 + V8; T8 – Testemunha. V12 – estádio vegetativo com 12 folhas; VT - pendoamento; R1 – florescimento; R3 – grão leitoso e R4 – grão pastoso. DMS – Diferença mínima significativa. CV – Coeficiente de variação.