

Contribuição das macrófitas aquáticas no controle de erosão aliadas às técnicas de engenharia natural, na margem direita do baixo São Francisco, Sergipe ⁽¹⁾.

<u>Maria Hosana dos Santos</u>⁽²⁾; Francisco Sandro Rodrigues Holanda⁽³⁾ Guilherme Matos Antonio⁽⁴⁾; Janisson Bispo Lino⁽⁵⁾; Tassio Lucas Sousa Santos⁽⁶⁾;

(1) Trabalho executado com recursos do CNPq

RESUMO: As macrófitas aquáticas proporcionam a manutenção da biota aquática, e podem auxiliar técnicas de engenharia natural. O objetivo desse trabalho foi avaliar a composição florística do enrocamento e inferir suas contribuições para minimizar os processos erosivos. O levantamento florístico ocorreu no período de abril de 2014 a abril de 2015. O material coletado em enrocamento da margem do Rio São Francisco, prensado e levado ao Herbário da Universidade Federal de Sergipe, para identificação. Foram identificadas 38 espécies, distribuídas entre 13 famílias, mostrando a grande diversidade de espécies, o que é positivo para manutenção da biodiversidade local. A densidade de macrófitas no trecho em estudo, forma uma estrutura que aliada as técnicas de engenharia natural, contribuem para a estabilização do talude evitado o cisalhamento do solo. Sendo assim, a presença destas espécies vegetais, nos taludes fluviais proporcionam desde a manutenção da biodiversidade, como também contribuem para a estabilização do solo.

Termos de indexação: Bioengenharia de solos. Taludes fluviais. Enrocamento.

INTRODUÇÃO

Os processos de erosão marginal podem ser causados por eventos naturais, com a movimentação de massa de solo pela ação fluvial ou pela ação das chuvas, e muitas vezes intensificada pela ação humana (CASADO et al, 2002). A erosão dos taludes marginais do baixo curso do Rio São Francisco é decorrente das alterações do seu regime hídrico, resultante do controle se sua vazão (BANDEIRA et al, 2012). Além disso, a ocupação irregular das margens, com a retirada da vegetação

ripária, para diversos fins, promoveu aumentos significativos nos níveis de erosão, especialmente, pelo solapamento da base dos taludes marginais (GUIMARÃES et al, 2010).

Um aliado para minimizar a erosão marginal, são as técnicas de Bioengenharia de Solos ou Engenharia Natural. Essas técnicas são de fácil implementação, corretas do ponto de vista ecológico e estético, empregando conhecimentos biológicos para estabilização de encostas de terrenos e margens de cursos d'água (ARAÚJO-FILHO et al, 2013). Uma das técnicas mais difundidas entre os pesquisadores é o enrocamento, do qual utiliza-se rochas para na proteção dos taludes, minimizando o solapamento da base, onde se desenvolvem macrófitas aquáticas.

Macrófitas aquáticas é um termo que caracteriza plantas que crescem na água, sejam em solos cobertos por água, ou solos saturados (ESTEVES, 1998). A presença das macrófitas aquáticas na base dos taludes marginais, podem contribuir na mitigação dos processos erosivos nessa área, já que o seu arcabouço atua como barreira dissipando a energia cinética das águas sobre o talude.

O objetivo desse trabalho foi avaliar a recomposição florística do enrocamento e inferir suas contribuições para minimizar os processos erosivos.

MATERIAL E MÉTODOS

Área de estudo

A área estudada está localizada na margem direita do São Francisco, no município de Amparo de São Francisco (coordenadas UTM N = 8.868.789,506 e E = 736.583,864). De acordo com Holanda et al (2000), trata-se de uma área com Neossolo Flúvico, onde seus sedimentos são recentes e tiveram origem no Quaternário,

⁽²⁾ Mestranda do Programa de Agricultura e Biodiversidade (hosana_bio@hotmail.com); Universidade Federal de Sergipe, São Cristóvão, Sergipe;

⁽³⁾ Professor Associado – Bolsista de Produtividade em PQ (fholanda@infonet.com.br) Universidade Federal de Sergipe, São Cristóvão, Sergipe;

⁽⁴⁾ Acadêmico do Curso de Ecologia (guilhermematos.antonio@gmail.com), Universidade Federal de Sergipe, São Cristóvão, Sergipe;

⁽⁵⁾ Acadêmico do Cursos de Engenharia Agronômica, Bolsista de Iniciação Científica (janissonlino@gmail.com) Universidade Federal de Sergipe, São Cristóvão, Sergipe;

⁽⁶⁾ Acadêmico do Curso de Engenharia Agronômica (tassiolucas18@gmail.com) Universidade Federal de Sergipe, São Cristóvão, Sergipe.

apresentando uma diversidade muito grande em suas características físicas, químicas e biológicas. Com relação ao clima, o local se enquadra na classificação de Köppen, tipo Am (clima megatérmico úmido e subúmido), onde as maiores precipitações pluviométricas ocorrem entre os meses de março a agosto (744 mm ano⁻¹) e a temperatura média anual é de 25°C.

Levantamento Florístico

Foi realizado um levantamento florístico que ocorreu no período de abril de 2014 a abril de 2015, totalizando quatro amostragens, duas no período chuvoso e duas no seco. Foram coletados todos os indivíduos encontrados floridos, no enrocamento, e no canal do rio. Para as coletas foram utilizados uma canoa em baixa velocidade, caderno de campo para anotações e uma câmera fotográfica, para o registro iconográfico dos materiais coletados.

O material botânico coletado seguiu os métodos convencionais de preparação, secagem montagem de exsicata. Posteriormente material foi levado para o Herbário - ASE da Universidade Federal de Sergipe, para deposição e identificação do mesmo. A identificação taxonômica foi realizada através de comparação entre o material coletado com os do acervo, com auxilio de bibliografia especializada e consulta a especialistas. Na classificação das famílias botânicas foram utilizadas as seguintes referências POTT, (2000), LORENZI (2008) e SOUZA (2008).

RESULTADOS E DISCUSSÃO

Foram encontradas 38 espécies, distribuídas entre 13 famílias, sendo que as mais representativas foram Asteraceae com 9 espécies, seguida de Poaceae e Onagraceae com 5 espécies cada, Passifloraceae e Fabaceae com 4 espécies, Hydrocharitaceae e Cyperaceae com 3 espécies, Rubiaceae com 2 esécies, e por fim Plantagineaceae, Salviniaceae, Pontederiaceae e Convolvulaceae e Malvaceae com uma espécie cada (Tabela 1).

É notória a diversidade de macrófitas no trecho em estudo. A técnica de enrocamento se insere entre as técnicas de engenharia natural, na qual possibilita a estabilidade do talude, além de criar condições para o desenvolvimento da flora aquática. Também contribui para restauração da biodiversidade local, pois além de promover proteção dos taludes, a presença dessa vegetação singular, propicia um berçário para nidificação da fauna aquática, e sua biomassa serve de forrageio para muitas espécies.

Dentre as famílias identificadas podemos destacar a Poaceae, pois é de grande importância

econômica e ecológica, sendo uma das mais conhecidas e estudadas (AGUIAR, 2013). Nos projetos de engenharia natural algumas espécies dessa família são bastante difundidas, pois seu sistema radicular apresenta grande potencial, para minimizar os processos erosivos. Destaca-se o potencial biotécnico de espécie como *Paspalum millegrana* Schrad.

Foi identificada também no trecho em estudo, a espécie *Juncus* sp, cujas fibras são utilizadas na fabricação de geotêxteis, utilizados nas obras de engenharia natural, com o objetivo de minimizar a erosão superficial, além de criar condições que propiciam o desenvolvimento de espécies pioneiras. Um outro fator positivo dos geotêxteis é que eles são biodegradáveis (HOLANDA et al, 2009).

Dentre as espécies flutuantes de macrófitas aquáticas, pode-se perceber o número significativo do aguapé, (*Eicchiornia crassipes*), sua origem é da América do Sul, mas atualmente essa espécie é cosmopolita, devido a beleza de suas flores ela foi introduzida em diversas regiões no qual se adaptou rapidamente. A proliferação desordenada dessa espécie pode trazer prejuízos ao ecossistema aquático. Dentre eles a diminuição do oxigênio, o que afeta diretamente na qualidade da água, e no desenvolvimento de sua biota, além de prejudicar a navegação e a pesca (MARTINS e PITELLI, 2005).

CONCLUSÕES

O encrocamento como uma das técnicas mais difundidas para o controle da erosão na base do talude potencializa condições para o desenvolvimento de macrófitas aquáticas.

As macrófitas aquáticas tornam-se uma aliada as obras de engenharia natural, contendo os processos erosivos, pois a densidade de sua biomassa, auxilia como barreira, dissipando a energia cinética da corrente de água no enrocamento.

As macrófitas aquáticas também contribuem na ampliação da biodiversidade local, servindo de refúgio para muitas espécies de peixes, crustáceos, insetos, aves e mamíferos;

REFERÊNCIAS

a. Periódicos:

ARAÚJO – FILHO, R. N., HOLANDA, F. S. R., ANDRADE, K. R. Implantação de técnicas de bioengenharia de solos no controle da erosão no baixo São Francisco, estado de Sergipe. Vol. 9, NUM 7. Scientia Plena, 2013.

BANDEIRA, A. A.; HOLANDA, F. S. R.; CASADO, A. P. B.; ARAÚJO-FILHO, R.N. Influência do fluxo e refluxo do aquífero na evolução do processo erosivo na margem do rio São Francisco. Magistra, Cruz das Almas-BA, v. 24, n. 2, p. 123-129, abr./jun. 2012.

CASADO, A. P. B. *et al.* Bank erosion evolution in São Francisco River. Viçosa, Brazil. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 26, p. 231-239, jan./mar. 2002.

GUIMARÃES, M. F. R.; HOLANDA, F. S. R; ROCHA, I. P. da; ARAUJO FILHO, R. N.; VIEIRA, T. R. S. Indicadores ambientais para o estudo da erosão marginal no rio São Francisco. Caminhos da Geografia, Uberlândia, v. 11, n. 34, p. 84-92, 2010.

HOLANDA, F. S. R. Estudo integrado do vale do São Francisco Sergipano: região de tabuleiros costeiros e pediplano sertanejo pedologia. Aracaju: CODEVASF, 2000. 138 p.

HOLANDA, F.S.R.; BANDEIRA, A.A.; ROCHA, I.P.; ARAÚJO – FILHO, R. N.; RIBEIRO, L.F.; ENNES, M.A. Controle da erosão em margens de cursos d'água: das soluções empíricas à técnica da bioengenharia de solos. Editora UFPR, Curitiba, n. 17, p. 93-101, 2009.

MARTINS A.T. e PITELLI, R.A. Efeitos do Manejo e *Eichhornia crassipes* sobre a qualidade da água em condições de mesocosmos. Planta Daninha, Viçosa-MG, v. 23, n. 2, p. 233-242, 2005.

b. Livro:

AGUIAR, C. Botânica para ciências agrárias e do ambiente. Volume III, Instituto Politécnico de Bragança, 2013.

ESTEVES, F. de A. **Fundamentos em Limnologia**. 2ª Ed. Rio de Janeiro: Interciência, 1998.

LORENZI, H. 1949 – Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e toxicas / Herri Lorenzi. – 4. Ed. – Nova Odessa, SP: Instituto Plantarum, 2008.

POTT, V.J. **Plantas aquáticas do Pantanal**. Por Vali Joana Pott; Arnildo Pott; Embrapa. Centro de pesquisa agropecuária do Pantanal (Corumbá, MS). – Brasília: Embrapa comunicação para transferência em tecnologia, 2000.

SOUZA, V.C. Botânica Sistemática: guia ilustrado para identificação das famílias de fanerógamas nativas e exóticas do Brasil, baseado em APG II / Vinicius Castro Souza / Herri Lorenzi. – 2 Ed. Nova Odessa, SP: Instituto Plantarum, 2008.

TABELA 1 – Famílias identificadas com suas respectivas espécies

Família	Espécie
Asteraceae	Mikania cordifolia (L.F.) Willd
	Emilia sonchifolia (L) DC. Ex Wight
	Melanthera latifolia
	Pluchea sagittalis(Lam.) Cabrera
	Tilesia baccata
	Blaincillea dichotoma
	Ageratum conyzoides L.
	Conyza cf. bonariensis (L.) Cronquist
	Porophyllum ruderale (Jacq.) Cass
	Panicum laxum Sw
	Paspalum millegrana Schrad
	Brachiaria decumbens
	Pennisetum setosum (Sw.) Rich.
	Panicum Sp
Onagraceae	Ludwigia leptocarpa (Nutt.) Hara
	Ludwigia helmintorrhiza (Mart.) Hara
	Ludwigia nervosa
	Ludwigia octovalvis (Jacq.) P.H. Raven
Passifloraceae	Ipomoea asarifolia (Desr.) Roem. & Schult.
	Turnera cistoides
	Piriqueta racemosa (Jacq.) Sweet
	Turnera subulataSmith
Fabaceae	Crotalaria incanaL.
	Macroptilium lathyroides (L) Urb.
	Centrosema pascuorum Mart. ex Benth. Aschynomene sensitive Sw.
	Cyperus compressus L
Cyperaceae	Cyperus compressus L Cyperus surinamensis Rottb.
	Cyperus odoratus L.
Hydrocharitaceae	Apalanthe granatensis (Humb. & Bonpl)
	Najas guadalupensis (Spreng.) Magnus
Rubiaceae	Spermacoce verticillata L. Pentodon pentandros
Plantagineaceae	Stemodia marítima
Salviniaceae	Salvinia auriculata Abul.
Pontederiaceae	Eicchiornia crassipes(Mart.) Solms
Convolvulaceae	Jacquemontia sp
Malvaceae	waltheria indica