

Nitrogênio mineral do solo sob cultivo de dendezeiro na Região Amazônica (1).

Leidivan Almeida Frazão⁽²⁾; <u>Pedro Henrique Lopes Santana</u>⁽³⁾; Lilian Assencio de Campos Duarte⁽⁴⁾; Angélica Jaconi⁽⁵⁾; Carlos Clemente Cerri⁽⁶⁾.

(1) Trabalho executado com recursos da Petróleo Brasileiro S.A (PETROBRAS).

⁽²⁾ Professor, Universidade Federal de Minas Gerais, Montes Claros, Minas Gerais; <u>lafrazao@ica.ufmg.br</u>; ⁽³⁾ Estudante Universidade Federal de Minas Gerais, Montes Claros, Minas Gerais; ⁽⁴⁾ Especialista de Laboratório, Centro de Energia Nuclear na Agricultura; ⁽⁵⁾ Doutoranda, Humboldt Universität zu Berlin, ⁽⁶⁾ Professor, Centro de Energia Nuclear na Agricultura.

RESUMO: Os íons amônio (NH₄+) e nitrato (NO₃-) são as principais formas nitrogênio (N) absorvidas pelas plantas em condições naturais. O objetivo desse trabalho foi quantificar as alterações nas formas de N mineral (amônio e nitrato) de um Latossolo Amarelo distrófico típico sob cultivo de dendezeiro na Região Amazônica. O estudo foi conduzido na Fazenda Agropalma, localizada em Tailândia (PA). Os locais selecionados para estudo foram uma área com vegetação nativa e outra com dendezeiro de 25 anos de idade. Os sistemas avaliados foram: i) Área de vegetação nativa, utilizada como referência da condição original do solo; ii) Área não fertilizada, utilizada como referência da área sem fertilização; iii) Área fertilizada e, iv) Área de deposição dos resíduos culturais (leira). As amostras de solo foram coletadas nas camadas 0-5, 5-10 e 10-20 cm de profundidade para determinações do N mineral. As amostras de solo foram preparadas no mesmo dia da coleta e as determinações das formas de N mineral foram realizadas no Laboratório de Biogeoguímica Ambiental (CENA/ USP). delineamento utilizado foi o inteiramente casualisado com 4 tratamentos e 5 repetições. Exceto na leira, o amônio foi mais abundante que o nitrato, relacionado a baixa disponibilidade de N. As taxas de mineralização foram mais elevadas quando comparadas com as taxas de nitrificação. Conclui-se que o manejo do solo com fertilizante mineral contribuiu com a disponibilidade rápida de N na área com dendê.

Termos de indexação: Amônio, nitrato, nitrificação.

INTRODUÇÃO

A palma (*Elaeis guineensis* Jacq.), palmeira de origem africana e mais conhecida como dendezeiro, é uma planta perene cultivada no Brasil desde o século XVII, inicialmente, na Bahia e depois no Pará

e em outros estados da Amazônia, sendo o Pará, atualmente, o maior produtor de óleo de palma do Brasil, concentrando mais de 80% da área plantada com dendezeiros (Müller & Alves, 1997).

O nitrogênio (N) é um elemento relevante nos estudos da matéria orgânica do solo (MOS) por ser um dos nutrientes com dinâmica mais pronunciada O aumento do uso de fertilizantes acelera o metabolismo microbiano. Os processos de nitrificação e desnitrificação regulam a concentração de N inorgânico do solo, lixiviação do nitrato e produção de N₂O. A nitrificação inclui a oxidação de amônio para nitrato via nitrito, sendo favorecida geralmente pelo aumento da disponibilidade de NH₄+. Na desnitrificação, ocorre a redução de nitrato para N2 via NO2, NO e N2O. Esses processos são realizados por grupos específicos microrganismos (Stein & Yung, 2003).

O nitrogênio (N) é um dos nutrientes requeridos em maiores quantidades no metabolismo das plantas. Amônio (NH₄+) e nitrato (NO₃-) são as mais importantes fontes de N inorgânico no solo, prontamente disponíveis às plantas e sua proporção de é um fator que pode influenciar no crescimento e desenvolvimento das plantas (Walecka-Hutchison & Walmoth, 2007). Segundo Havlin (2005), a ocorrência de maiores taxas de absorção de NH₄+ ou de NO₃- pelas plantas depende do estádio fenológico, do ambiente e de outros fatores. Alguns estudos apontam um melhor crescimento das plantas quando o NH₄+ é a fonte de N, em termos de custo de energia, devido o nitrato absorvido na solução do solo ser reduzido a amônio nas raízes e na parte aérea (Hachiya et al., 2012).

Diante do exposto, O objetivo desse trabalho foi quantificar as alterações nas formas de N mineral (amônio e nitrato) de um Latossolo Amarelo distrófico típico sob cultivo de dendezeiro na Amazônia.

MATERIAL E MÉTODOS

Este estudo foi conduzido na fazenda Agropalma localizada em Tailândia (PA) (48°46'W e 22°7'S). A empresa conta com uma área total de 39.000 hectares plantados com palmeiras. De acordo com a classificação de Köppen, o clima local é Afi, onde a média anual de precipitação é de 2.500 mm e de temperatura é de 26,6° C. Os solos são bem drenados com conteúdos médios de argila (18-29%), e classificados como Latossolo Amarelo distrófico típico (Embrapa, 2013).

Tratamentos e amostragens

Os locais selecionados para este estudo foram uma área com vegetação nativa (referência) e outra com dendezeiro de 25 anos de idade, implantada em 1985 e proveniente de vegetação nativa. Durante a condução dessa cultura, há a deposição de resíduos culturais (formação de leiras) em 50% das entrelinhas de plantio. Dessa forma, os tratamentos avaliados foram:

- T1 Floresta (FLOR): área de vegetação nativa, utilizada como primeiro ponto de referência, representando a condição original do solo;
- T2 Área não fertilizada (NFERT): entrelinha da cultura sem aplicação de fertilizantes, utilizada como segundo ponto de referência, representando a área de cultivo sem aplicação de adubação.
- T3 Area de deposição dos resíduos culturais (LEIR): entrelinha onde são formadas as leiras, compostas por resíduos culturais provenientes da poda durante o processo de colheita dos cachos de dendê.
- T4 Área fertilizada (FERT): entrelinha da cultura onde há a aplicação de fertilizantes. A fertilização foi realizada de acordo com a recomendação para a área com 25 anos de idade, com aplicação de 572 kg de NPK (6:2:22), correspondendo a 4kg por planta. A fonte de fertilizante nitrogenado utilizada foi o sulfato de amônio.

As amostragens de solo foram realizadas em agosto de 2010, época que constitui um dos períodos de adubação da cultura e que a incidência de chuvas é menos frequente na região de estudo As determinações do N mineral (NH₄⁺ e NO₃⁻) foram realizadas nas camadas 0-5 cm, 5-10 cm e 10-20 cm no perfil do solo, com 5 repetições em cada tratamento. As amostras de solo foram preparadas no mesmo dia da coleta, removendo-se as raízes eventualmente presentes. As concentrações de N mineral foram determinadas em extratos de solo, os quais foram obtidos através da extração de 10g de terra úmida com 50ml de KCl (2 mol L-1) por 24 horas. Estes extratos foram filtrados e preservados com fenil acetato de mercúrio a uma concentração final de 0,5 mg L⁻¹.

As concentrações de amônio (NH_4^+) e de nitrato (NO_3^-) nos extratos foram determinadas usando um sistema automático de injeção de fluxo contínuo (FIA) (Ruzicka & Hansen) acoplado a um condutivímetro e a um espectrofotômetro. O N- NH_4^+ foi analisado por condutivimetria pelo método Solorzano, e o $N-NO_3^-$ por colorimetria na forma de $N-NO_2^-$ após a redução do catalisador cádmio (Piccolo et al., 1994).

As taxas líquidas de mineralização (TLM) foram calculadas pela diferença entre as concentrações de N-inorgânico (NH₄+ + NO₃-) antes e após sete e quinze dias de incubação, a 25 $^{\circ}$ C. Semelhantemente, as taxas líquidas de nitrificação (TLN) corresponderam às diferenças entre os teores iniciais e finais de NO₃-, após sete e quinze dias de incubação.

Análise estatística

O delineamento utilizado foi o inteiramente casualisado com 4 tratamentos e 5 repetições. Os dados obtidos foram submetidos à Análise de Variância e as medias comparadas pelo Teste de Tukey (p<0,05) por meio do Programa Statistical Analysis System v. 9.2.

RESULTADOS E DISCUSSÃO

Foram constatadas variações nas concentrações de nitrato e amônio entre os tratamentos avaliados (p<0,05). **(Tabela 1)**.

O amônio (NH₄+) foi a forma predominante de N mineral na floresta nativa (FLOR), nas entrelinhas do cultivo de dendezeiro limpas (NFER) e com aplicação de fertilizantes (FERT) até 20 cm do perfil do solo. Nas áreas com deposição de resíduos culturais (LEIR) as concentrações de NO₃- são pouco mais expressivas, e superam os teores de NH₄+.

Comparando os resultados obtidos antes da aplicação do fertilizante (T0) e após 07 dias de incubação das amostras (T7), os estoques de amônio variaram entre 0,52 e 13,53 kg.ha⁻¹ e, os de nitrato entre 0,52 e 3,59 kg.ha⁻¹. Estes resultados coincidem com valores encontrados por Alfaia (2007) para a Amazônia Oriental, quanto a maior presença de nitrogênio mineralizado na forma amoniacal nas camadas mais superficiais do solo. Estes valores podem estar relacionados com a baixa disponibilidade de N nesses tratamentos, além da preferência e captura dos microrganismos e vegetais pelo nitrogênio mineralizado em forma de nitrato (MARTINELLI, 2003). Ademais, a lixiviação do íon nitrato favorecida por sua carga negativa, também deve ter auxiliado as concentrações de nitrogênio obtidas. As concentrações

inorgânico total ($NO_3^- + NH_4^+$) nos locais estudados foram maiores no sistema (FLOR) e (FERT) em relação as demais áreas manejadas.

A taxa líquida de mineralização foi maior na área fertilizada em todas as profundidades (p<0,05) onde observou-se menores taxas, porque o nitrogênio já foi aplicado na forma mineral, de forma que a planta pode absorver prontamente. A taxa de mineralização do nitrogênio representa a fração do solo presente no nitrogênio orgânico suscetível à mineralização, pressupondo que a mineralização seja descrita por uma cinética de primeira ordem (Stanford et al., 1972).

A taxa de mineralização foi superior a taxa de nitrificação. Sua maior atividade está diretamente relacionada com a temperatura, umidade, aeração, quantidade e natureza do material orgânico presente (Mary, 1996). Como os três primeiros fatores são uniformes, o comportamento apresentado pelos solos em estudo está diretamente associado ao conteúdo de matéria orgânica e fertilizante aplicado.

Elevada quantidade de oxigênio presente entre as partículas do solo influencia processos de oxidação de amônio e nitrato, o que relaciona-se provavelmente com as taxas liquidas de nitrificação. Em contrapartida, a acidez do solo limita o desenvolvimento de bactérias nitrificadoras (Jordan et al.,1979).

CONCLUSÃO

A aplicação de fertilizantes é um fator determinante para a disponibilização de nutrientes para as plantas, de forma que o N inorgânico total na área onde foi constantemente fertilizada apresentou valores semelhantes a vegetação nativa.

REFERÊNCIAS

ALFAIA, S. S. Mineralização do nitrogênio incorporado como material vegetal em três solos da Amazônia Central. Revista Brasileira de Ciência do Solo, Viçosa, 21:387-392, 1997.

EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solo. Sistema Brasileiro de Classificação de Solo. Rio de Janeiro: EMBRAPA, 306p. 2013.

HACHIYA, T. WATANABE, C. K., FUJIMOTO, M. Nitrate addition alleviates ammonium toxicity without lessening ammonium accumulation, organic acid depletion and inorganic 59 cation depletion in Arabidopsis thaliana shoots. Plant and Cell Physiology, v. 53, p. 577-591, 2012.

HAVLIN, J. L. Soil fertility and fertilizers. An introduction to nutrient management. 7.ed. New Jersey, Pearson Prentice Hall, 2005. 515p.

JORDAN, C. F.; TOOD, R. L.; ESCALANTE, G. Nitrogen conservation in a tropical rain forest. Oecologia, Berlin, v. 39, p. 123-128, 1979.

MARTINELLI, L. A. Element interactions in Brazilian landscapes as influenced by human interventions. In: MELILLO, J.; FIELD, C. B.; MOLDAN, B. Scope 60: Interactions of the major biogeochemical cycles: Global change and human impacts. [S.I.]: Islands Press, p. 193-210, 2003

MARY, D. Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyle. In: SPRENT, J. L.; MARY, D. Advances in Legume Systematics: Part 5 - The nitrogen factor. England. p. 211-228, 1994.

MÜLLER, A.A., ALVES R.M. A dendeicultura na Amazônia Brasileira. Belém: Embrapa Amazônia Oriental. 44p., 1997.

PICCOLO, M.C.; NEILL, C.; CERRI, C.C. Net mineralization and net nitrification along a tropical forest-to-pasture chronossequence. Plant and Soil. 162, 61-71. 1994.

RUZICKA, J., & HANSEN, E.H. Flow injection analysis. New York: Wiley Interscience. 395p. 1981.

STEIN, Y.L., & YUNG, Y.L. Production, Isotopic composition, and atmospheric fate of biologically produced nitrous oxide. Annual Review of Earth and Planetary Science, 31: 329-356, 2003.

STANFORD, G., FRERE, M. H., & SMITH, D. H. Temperature coefficient of soil nitrogen mineralization. Soil Science, 115(4), 321-323. 1973.

WALECKA-HUTCHISON, C. M., & WALWOTH, J. L. Evaluating the effects of gross nitrogen mineralization, immobilization, and nitrification on nitrogen fertilizer availability in soil experimentally contaminated with diesel. Biodegradation, v. 18, n. 2, p. 133-144, 2007.

Tabela 1. Estoques (kg ha⁻¹) de nitrato, amônio, nitrogênio inorgânico total e taxas líquidas de mineralização e nitrificação (kg ha⁻¹ dia⁻¹) em área de floresta nativa (FLOR) e nas entrelinhas cultivo de dendezeiro limpas (NFER) com deposição de resíduos culturais (LEIR), e com aplicação de fertilizantes (FERT).

_(: :: =: : ; : : : : : :	Variáveis							
	N-NO ₃ -		N-NH ₄ +		N Inorgânico		TI NA	TIN
Tratamento	T0	T7	T0	T7	T0	T7	- TLM ₇	TLN ₇
	kg ha ⁻¹						-kg ha ⁻¹ dia ⁻¹ -	
				0-5 cm				
FLOR	1,48aB	2,47aA	1,90abA	3,47bB	3,38a	5,94b	0,37b	0,14a
NFER	0,59bB	1,12bA	1,13bA	3,00bB	1,72b	4,12b	0,34b	0,08a
LEIR	1,35aB	2,72aA	0,63bA	1,21bA	1,98b	3,92b	0,28b	0,18a
FERT	1,12aB	1,77abA	3,00aA	11,20aB	4,12a	12,97a	1,26a	0,09a
	5-10 cm							
FLOR	1,93aA	2,05aA	2,05abA	3,42bA	3,98ab	5,47b	0,21b	0,02b
NFER	0,57bA	1,80aB	1,51bA	3,59bB	2,08b	5,62b	0,51b	0,18a
LEIR	2,22aA	2,71aA	1,43bA	2,73bB	3,64b	5,44b	0,26b	0,07b
FERT	1,80aA	1,89aA	3,59aA	13,53aB	5,62a	15,42a	1,40a	0,01b
	10-20 cm							
FLOR	1,42aA	1,68aA	4,61aA	5,27bA	6,03a	6,73b	0,10b	0,04b
NFER	0,43bA	2,09aB	1,29bA	3,90bB	1,72b	5,99b	0,61a	0,24a
LEIR	1,58aA	2,10aA	0,52bA	3,13bB	2,62b	4,70b	0,30b	0,08b
FERT	1,75aA	1,85aA	3,70aA	9,14aB	5,10a	10,99a	0,84a	0,01b

Médias seguidas da mesma letra minúscula na mesma coluna, para cada profundidade avaliada, e seguidos da mesma letra maiúscula na mesma linha, entre os dias de avaliação, não diferem entre si pelo teste de Tukey (p<0,05).