

Mineralogia e química de solos construídos na área de mineração de carvão de Candiota-RS⁽¹⁾

<u>Jeferson Diego Leidemer</u>⁽²⁾; Dioni Glei Bonini Bitencourt ⁽³⁾ Luiz Fernando Spinelli Pinto⁽⁴⁾; Eloy Antonio Pauletto⁽⁴⁾; Pablo Miguel⁽⁴⁾; Emílio Mattos Rodrigues⁽⁵⁾

(1) Parte da tese de doutorado do Programa de Pós Graduação em Agronomia/Solos – UFPel.

RESUMO: A mineração de carvão mineral em Candiota/RS, a maior jazida do país, é importante para o abastecimento elétrico do Estado do Rio Grande do Sul. Sua mineração e o processo de recomposição topográfica e ambiental origina solos antropogênicos, denominados de construídos, compostos por uma espessa camada de fragmentos de rochas sedimentares e saprolitos (estéril) recoberta por uma camada de solo superficial (terra vegetal - "topsoil") de 30/60cm, eventualmente com uma camada de argila (horizontes B e C do solo natural). Em áreas mineradas de diferentes idades, com e sem terra vegetal e camada de argila foram abertas trincheiras até 2m de profundidade e coletadas amostras deformadas em quatro profundidades. As amostras de estéril foram homogeneizadas, quarteadas, trituradas e moídas, e passadas em peneira de 2mm, as de terra vegetal e argila preparadas normalmente. As amostras foram determinadas quimicamente quanto ao pH, complexo trocável e carbono orgânico mineralogicamente por difratometria de raios X na fração total forma de pó. Os materiais do estéril do solo construído da malha II, mais antiga (28 anos) e sem cobertura de terra vegetal, apresentaram pH mais baixo e menor teor e saturação por bases do que os solos construídos mais jovens (4 a 18 anos), cobertos por camada de terra vegetal ("topsoil") e/ou argila. Os pHs com valores entre 2,2 e 4,5 das camadas de estéril e a presença de gippsita, anidrita e jarosita (sulfatos) demonstram desenvolvimento do processo de sulfurização ativa no subsolo de todos os perfis de solos estudados.

Termos de indexação: área minerada, degradação do solo, drenagem ácida, sulfatos.

INTRODUÇÃO

O carvão mineral é uma importante fonte de energia não renovável no país.Do volume de reservas, o Rio Grande do Sul responde por89,25%; Santa Catarina, 10,41%; Paraná, 0,32% e São Paulo, 0,02%. Somente a Jazida de Candiota (RS) possui 38% de todo o carvão nacional (ANEEL, 2008). Nesta, em função do alto teor de cinzas, o

carvão não é beneficiado e é utilizado para geração de energia termoelétrica, abastecendo a Usina Termoelétrica Presidente Médici, localizada ao lado da jazida, com capacidade instalada de 446MW, nas Fases A, B e C (CGTEE, 2015).

O processo de extração de carvão em Candiota é realizado na forma de lavra a céu aberto em faixas, envolvendo as seguintes etapas: (a) remoção do horizonte superficial do solo e eventualmente do subsolo com retro escavadeira e caminhões; (b) remoção das camadas de rochas e saprolitos sobrejacentes às camadas de carvão, denominados de estéreis, com uma dragline; (c) extração do carvão; (d) preenchimento da cava com as camadas de rochas e saprolitos (estéreis) retirados da cava seguinte; (e) aplainamento das pilhas de estéreis com tratores de esteira para recompor topograficamente a paisagem; deposição das camadas de solo superficial (horizonte A), denominada de terra vegetal, e/ou subsolo (horizonte B e/ou C), denominada de argila, essa entre as camadas de estéril e a terra vegetal, espalhadas com trator de esteira; (g) preparo e correção do solo e plantio de espécies vegetais com vistas à revegetação da área.

Dessa forma, em Candiota/RS, são originados solos construídos, de natureza antropogênica (Kämpf et al., 1997; Pinto & Kämpf, 2002), formados em profundidade por uma espessa camada de estéril, composta por uma mistura heterogênea de rochas sedimentares (arenitos, siltitos, folhelhos, argilitos e carvões não aproveitados) e saprolitos, recoberta por uma camada de 30 a 50cm em média de terra vegetal ("topsoil"). Eventualmente, entre a camada de estéril e a terra vegetal é colocada uma camada de argila (40-60cm), proporcionando uma cobertura sobre a camada de estéril que pode ultrapassar 1m de espessura.

A oxidação de sulfetos, principalmente a pirita, contida nos carvões e nas rochas associadas da camada de estéril, gera a produção de ácido sulfúrico e intensa acidificação, em um fenômeno conhecido como drenagem ácida de mina (DAM) (USEPA, 1994; Tiwary, 2001). A condição de extrema acidez, com pH até menor que 3, leva à dissolução dos silicatos e aumento da solubilidade

⁽²⁾Graduando da Faculdade de Agronomia Eliseu Maciel - UFPel. E-mail: jeferson.leidemer@gmail.com; ⁽³⁾Doutor em Ciências pelo Programa de Pós Graduação em Agronomia/Solos - UFPel; ⁽⁴⁾Professor da Universidade Federal de Pelotas; ⁽⁵⁾Graduando da Faculdade de Agronomia Eliseu Maciel - UFPel.

de metais, contaminando as águas superficiais e subterrâneas (Pinto & Kämpf, 2002).

O objetivo do trabalho foi o de caracterizar a composição química do complexo trocável e a mineralogia de perfis de solos construídos de diferentes idades na área de mineração de carvão de Candiota, RS.

MATERIAL E MÉTODOS

O trabalho foi realizado na área de mineração de carvão da Companhia Riograndense de Mineração (CRM) no município de Candiota-RS, próximo à cidade de Bagé (55km), distante 400km de Porto Alegre e a 140km da cidade de Pelotas.

Foram selecionadas duas áreas mineradas em diferentes épocas: malha II (1980-1990), sem plano de recuperação ambiental durante a lavra, que deixou somente pilhas de estéreis, e malhas IV/VII (década de 1990 até o presente), onde foi realizada a recuperação ambiental com a colocação de terra vegetal ("topsoil") sobre a camada de estéril.

Nestas áreas foram abertas trincheiras de 1.5 x 1,5 x 2,0m, com auxílio de retro escavadeira, de forma a expor uma área ampla que permitisse a coleta de uma amostra que abrangesse toda a gama de materiais presentes. Foram coletadas amostras de solo deformadas com auxílio de um martelo pedológico, retirando-as de todas as paredes expostas da trincheira, a fim de obter-se amostras representativas da área em torno desta, caracterizando uma amostragem composta. A coleta foi feita em quatro profundidades na trincheira da malha II: 0-10; 40-50; 100-110; 190-200cm, com variações nas malhas IV e VII, pois as profundidades das camadas a serem coletadas dependiam da morfologia do perfil (espessura da camada de terra vegetal e presença e espessura da camada de argila).

O perfil da malha II foi identificado como MII-T1 (construído em 1983) e os das malhas IV e VII como sendo: MIV-T1 (construído em 1993 - com colocação de terra vegetal), MIVT2 (construído em 1994, com colocação de terra vegetal mais camada de argila), MVII-T3 (construído em 2001, com colocação de terra vegetal e adição de calcário) e MIV-T4 (construído em 2007, com colocação de terra vegetal mais camada de argila).

As amostras deformadas, coletadas na ordem de 10-13kg, foram trazidas para os laboratórios do Departamento de Solos da Universidade Federal de Pelotas (UFPel), onde foram homogeneizadas e quarteadas, de forma a obter uma quantidade menor (aproximadamente 1kg), que foi triturada,

moída e passada em peneira de malha de 2mm para posteriores análises.

Em laboratório, as amostras de solo foram analisadas quimicamente conforme Embrapa (2011). O pH foi determinado em água por determinação potenciométrica através de uma suspensão solo-líquido. Os cátions trocáveis Ca, Mg e Al foram extraídos com KCl 1M; K e Na trocáveis foram extraídos com solução Mehlich 1 (HCI 0,05M + H2SO4 0,0125M) e a acidez potencial com acetato de cálcio 0,5M a pH7. Cálcio e magnésio foram determinados por espectroscopia absorção atômica: potássio е espectrofotometria de chama; alumínio e acidez potencial (H + Al) por titulação com NaOH 0,0125N, onde H extraível foi calculado por diferença. O teor de carbono orgânico do solo foi determinado através do método de combustão de Walkley-Black.

A análise mineralógica foi realizada na fração total na forma de pó, no Laboratório de mineralogia do Departamento de Solos, Faculdade de Agronomia da Universidade Federal do Rio Grande do Sul. O equipamento utilizado foi um difratômetro de raios X modelo Bruker D2 Phaser. Empregou-se radiação de Cu-Ka e filtro de Ni, detector LynxEye® e o slit primário com abertura de 0,3mm. A faixa de varredura foi de 4 a 70º 20. Os difratogramas foram gerados com programa próprio do equipamento e a interpretação dos mesmos foi efetuada com base no espaçamento interplanar (d) por meio das chaves de Brindley & Brown (1980).

RESULTADOS E DISCUSSÃO

A tabela 1 mostra a composição química do complexo trocável dos solos construídos, em que se observa a predominância dos cátions trocáveis Ca, Mg e Al, tanto nos estéreis de mineração como na terra vegetal ou argila, com valores inferiores nestas últimas, bem como a presença de significativos teores de carbono orgânico nos estéreis.

Em geral, a capacidade de troca de cátions dos materiais do estéril é de duas a três vezes mais elevada do que das camadas de argila e de terra vegetal. Essa pode ser resultado de uma atividade maior da argila nos estéreis e/ou da presença de sais solúveis produzidos pelo processo de sulfurização. Observa-se também que o pH em água do estéril dos solos construídos das malhas IV e VII apresentaram valores mais altos (entre 2,4 e 4,5) do que na malha II (entre 2,2 e 2,5), sendo que em média a soma e a saturação por bases foi maior para os solos das malhas IV e VII do que o solo da malha II, com um comportamento inverso em relação os teores e saturação por alumínio. Os

teores de carbono orgânico dos estéreis (entre 24 e 51 g kg⁻¹), é resultados da presença de fragmentos de carvões e de folhelhos carbonosos no material.

As diferentes idades de mineração e a composição desses solos construídos podem explicar estas características, isto é, na malha II, mais antiga e possivelmente por não possuir terra vegetal e camada de argila, o perfil ficou submetido a uma maior produção de ácido sulfúrico e uma maior lixiviação dos cátions básicos, o que resultou no acúmulo de Al e H e conseqüente deslocamento do equilíbrio ácido/base para a faixa mais ácida. Estas reações químicas de oxidação da pirita produzem sulfato e íons de hidrogênio que atacam os minerais aluminossilatos liberando o alumínio para o meio, o que aumenta a acidez potencial.

A figuras 2 mostra os difratogramas da terra vegetal do perfil da MVII-T3 e do estéril nos perfis da MII-T1, MIV-T1, MIV-T2, MVII-T3 e MIV-T4, em profundidades selecionadas.

No material da terra vegetal do perfil da MVII-T3 é observada uma mineralogia a base de quartzo e caulinita, indicadas pelos picos principais a 0,425nm e 0,334nm (quartzo), e 0,7216nm e 0,444nm (caulinita), com uma menor quantidade de feldspato potássico (0,325nm), anatásio (0,353nm) e hematita (0,270nm), com vários outros picos secundários, característicos principalmente do quartzo, que tem seus reflexos favorecidos quando a amostra é passada na forma de pó. Essa composição é condizente com o tipo de solo (Argissolo Vermelho), que tem sido encontrado na área minerada até o presente momento.

Nas amostras de estéril, a mineralogia principal continua a base de quartzo e caulinita, esse última com picos mais agudos do que na terra vegetal, indicativa de uma caulinita mais bem cristalizada (litogênica). Observa-se também a presença constante de micas (picos a 0,998nm e 0,498nm), além do feldspato (0,325nm), compondo a mineralogia básica dos estéreis.

Nos estéreis, além dos minerais descritos, também é constante a ocorrência de picos menores identificados como de gipsita (picos a 0,758nm e 0,498nm), com a presença eventual de esmectita (1,562nm) (malha IV-T4), siderita (0,279nm) (malha IV-T4), jarosita (0,509nm, 0,311nm e 0,308nm) (malha VII-T3) e anidrita (0,348nm) (malha IV-T1). Estes minerais, no caso da esmectita e da siderita no perfil da malha IV-T4, provavelmente são oriundos de um material da coluna geológica mais rica em bases, em acordo com a composição química do complexo trocável (Tabela 1). Já os outros minerais devem ter sido formados pelo processo de sulfurização, uma vez que são sulfatos, de Ca (gipsita e anidrita) e de Fe e K (jarosita).

CONCLUSÕES

Os materiais do estéril do solo construído da malha II, mais antiga (28 anos), apresentam pH mais baixo e menor teor e saturação por bases do que os solos construídos mais jovens (4 a 18 anos), como resultado da ausência de camada da cobertura de terra vegetal ("topsoil") e/ou argila e ao maior tempo de exposição à percolação por água e lixiviação.

Os pHs com valores entre 2,2 e 4,5 das camadas de estéril e a presença de gippsita, anidrita e jarosita demonstram o desenvolvimento do processo de sulfurização ativa no subsolo de todos os perfis de solos estudados.

AGRADECIMENTOS

À Companhia Riograndense de Mineração pela concessão da área e apoio técnico; ao CNPq pela concessão de bolsas de estudo e à UFPel pelo incentivo e estrutura.

REFERÊNCIAS

ANEEL. Atlas de Energia Elétrica do Brasil. 3ed. Brasília: Aneel, 2008. 236p.

BRINDLEY, G.W.; BROWN, G. Crystal structures of clay minerals and their X ray identification. Madison: American Society of Agronomy, 1980. 495 p.

CGTEE.Companhia de Geração Térmica de Energia Elétrica - Eletrobrás CGTEE. Unidade Candiota. Disponível em: http://www.cgtee.gov.br/sitenovo/index.php?secao=37>. Acesso em 12 jun. 2015.

EMBRAPA - Centro Nacional de Pesquisa de Solos. Manual de Métodos de Análise de Solo. Rio de Janeiro: EMBRAPA CNPS. 2011. 230p.

KÄMPF, N., SCHNEIDER, P., GIASSON, E. Propriedades, pedogênese e classificação de solos construídos em áreas de mineração na bacia carbonífera do baixo Jacuí (RS). Revista Brasileira de Ciência do Solo,v.21, p.79-88, 1997.

PINTO, L. F. S.; KÄMPF, N. Contaminação dos solos construídos. In: TEIXEIRA, E. C.; PIRES, M. J. R. coord. Meio ambiente e carvão. Impactos da exploração e utilização. Porto Alegre, FINEP/CAPES/PADCT/GTM/PUCRS/UFSC/FEPAM, 2002. p.69-92.

TIWARY R.K. Environmental Impact of coal mining on water regime and its management. Water, Air and Soil Pollution, v. 132, p. 185-199, 2001.

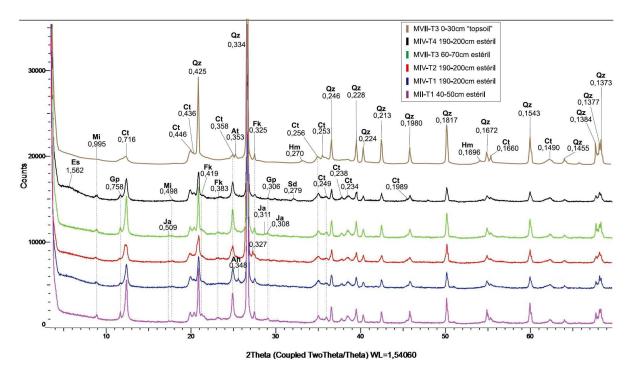

USEPA. Environmental Protection Agency, Office of Solid Waste. Acid mine drainage prediction. Washington, DC. 1994. (Technical Document EPA 530-R,NTIS PB94).

Tabela 1 - Caracterização química dos perfis de solos construídos das Malhas II, IV e VII (Candiota-RS).

Perfil / Idade	Prof.	рН	Complexotrocável								Saturação		0.0
		H2O	Ca	Mg	K	Na	S	Al	Н	T	٧	ΑI	C Org.
	cm			cmol _c kg ⁻¹						%		g kg ⁻¹	
MII-T1	0-10	2,28	3,90	0,50	0,00	0,01	4,41	17,28	8,20	29,90	14,75	79,67	51,09
(28 anos)	40-50	2,23	6,39	0,72	0,00	0,02	7,13	24,38	6,01	37,52	19,01	77,37	34,03
	100-110	2,53	7,02	1,00	0,04	0,02	8,08	20,70	2,40	31,18	25,91	71,93	33,13
	190-200	2,42	1,56	1,37	0,13	0,04	3,09	19,60	2,21	24,90	12,42	86,37	37,63
MIV-T1	0-30	4,72	2,39	1,05	0,32	0,01	3,77	3,78	4,77	12,32	30,61	50,07	22,28
(18 anos)	60-70	2,88	4,74	1,78	0,29	0,02	6,84	10,78	5,18	22,80	29,99	61,19	24,39
	100-110	3,18	8,92	4,38	0,50	0,08	13,88	6,98	3,73	24,59	56,45	33,47	29,15
	190-200	4,12	12,37	5,93	0,71	0,19	19,20	2,91	2,22	24,33	78,91	13,15	29,42
MIV-T2	0-30	5,07	2,43	1,30	0,65	0,02	4,40	1,66	5,02	11,09	39,72	27,37	16,90
(17 anos)	60-70	3,75	0,85	0,52	0,12	0,01	1,50	6,29	4,68	12,47	12,01	80,76	11,12
	100-110	2,78	5,25	2,02	0,24	0,11	7,61	10,11	11,76	29,48	25,83	57,03	39,69
	190-200	3,15	7,39	3,52	0,39	0,30	11,60	5,35	7,55	24,50	47,35	31,57	42,89
MVII-T3	0-30	7,09	6,02	3,68	0,41	0,01	10,12	0,14	2,28	12,55	80,70	1,36	7,79
(10 anos)	60-70	3,40	6,56	3,82	0,33	0,10	10,80	4,39	7,70	22,88	47,18	28,89	34,49
	100-110	4,02	9,43	6,45	0,46	0,19	16,53	2,19	5,70	24,41	67,71	11,68	37,33
	190-200	3,88	8,53	5,99	0,44	0,20	15,16	2,21	5,48	22,86	66,33	12,74	36,92
MIV-T4	0-50	5,12	3,50	1,85	0,19	0,04	5,58	0,31	4,28	10,18	54,83	5,32	8,08
(4 anos)	50-90	5,45	4,99	3,15	0,11	0,14	8,39	1,30	2,20	11,89	70,56	13,40	1,10
	110-120	2,37	11,45	5,55	0,15	0,28	17,44	18,43	7,77	43,63	39,97	51,38	45,06
	190-200	4,48	14,40	11,91	0,52	1,15	27,98	1,64	5,68	35,30	79,27	5,54	23,64

S = soma de bases, T = capacidade de troca de cátions, V = saturação por bases sombreado de cinza claro identifica terra vegetal ("topsoil") e sombreado de cinza escuro camadas de argila.

Figura 1 - Difratogramas de camadas selecionadas dos perfis dos solos construídos da MII-T1 (40-50cm), MIV-T1 (190-200cm), MIV-T2 (190-200cm), MVII-T3 (0-30cm), MVII-T3 (60-70cm) e MIV-T4 (190-200cm). Espaçamentos "d" em nm; Es = esmectita, Mi = mica, Ct = caulinita, Qz = quartzo, Fk = feldspato potássico, Gp = gipsita, Ja = jarosita, Ah = anidrita, Sd = siderita, At = anatásio, Hm = hematita.