

Doses de gesso e potássio na produção de couve-flor⁽¹⁾.

<u>Hamilton César de Oliveira Charlo</u>⁽²⁾; Juliano da Silva Martins de Almeida⁽³⁾; Édimo Fernando Alves Moreira⁽⁴⁾; Moilton Ribeiro Franco Júnior⁽⁵⁾; Regina Maria Quintão Lana⁽⁶⁾; Adriane de Andrade Silva⁽⁷⁾.

(¹¹)Trabalho executado com recursos da Fundação de Amparo à Pesquisa do Estado de Minas Gerais – FAPEMIG. (²²)Professor Doutor; Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro (IFTM), Uberaba, Minas Gerais; hamiltoncharlo@iftm.edu.br; (³) Doutorando; Universidade Federal de Uberlândia (UFU); (⁴) Professor; Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro (IFTM); (⁵)Professor; Universidade Federal de Uberlândia (UFU); (†) Professora; Universidade Federal de Uberlândia (UFU); (†) Professora; Universidade Federal de Uberlândia (UFU).

RESUMO: **RESUMO:** O aproveitamento de resíduos na agricultura tem sido, nos últimos anos, uma alternativa muito viável para a destinação de rejeitos que, se armazenados de forma incorreta, podem causar contaminações ambientais. Com o objetivo de se verificar a viabilidade da utilização de gesso, aliado à aplicação de potássio, foi realizado um experimento, em campo, em Uberaba-MG. Com base nas características químicas do solo, calculouse a adubação química de plantio, a qual foi realizada para todos os tratamentos, constando de 50 kg ha⁻¹ de P₂O5 e 30 kg ha⁻¹ de N e 20% das doses testadas de potássio para cada um dos tratamentos. O delineamento experimental utilizado foi o de blocos ao acaso, disposto em esquema fatorial 5x5, com 3 repetições, sendo aplicadas 5 doses de gesso (0; 500; 1000; 2000; 4000 kg ha⁻¹) e 5 doses de K₂O (0, 100, 180, 240 360 kg ha⁻¹). Foram avaliadas a altura e diâmetro da cabeça, o diâmetro do pedúnculo e a massa comercial da cabeça. Para análise dos dados, foi utilizado o método de seleção múltipla, e, para seleção do modelo de regressão, o método backward stepwise selection, utilizando-se o software R. A aplicação de gesso influenciou apenas o diâmetro do pedúnculo e a altura da cabeça, sendo os valores máximos obtidos com a maior dose. Já as doses de potássio influenciaram todas as características avaliadas, sendo que a maior massa da cabeça foi verificada com a aplicação de 360 kg ha⁻¹ de K₂O.

Termos de indexação: *Brassica oleracea* var. *botrytis,* resíduos, reaproveitamento.

INTRODUÇÃO

Dentre os fatores de produção de couve-flor, destaca-se a nutrição da planta, sendo que, dentre os macronutrientes, um dos mais limitantes é potássio (K), sendo o segundo mais absorvido por plantas de couve-flor (Castoldi et al. 2009).

Apesar de ser uma planta de porte pequeno, a couve-flor apresenta um sistema radicular vigoroso, e, boa parte das raízes, ultrapassam a camada de 0-20, fazendo com que o fornecimento de nutrientes em camadas mais profundas possa proporcionar

maiores produções. Dentro deste contexto, uma estratégia fornecimento de de nutrientes. especialmente os cátions. em camadas subsuperficiais é com a aplicação de gesso. O gesso é um resíduo muito abundante no Triângulo Mineiro, em função do parque de empresas produtoras de fertilizantes, e que, se mal armazenado, caracteriza-se em risco ambiental. Desta forma, sua utilização em larga escala na agricultura pode solucionar este problema.

Diante do exposto, o objetivo deste trabalho foi avaliar a viabilidade da utilização de gesso, aliado à aplicação de potássio na cultura da couve-flor.

MATERIAL E MÉTODOS

O experimento foi conduzido em campo, no Setor de Olericultura, do Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro (IFTM - Campus Uberaba), localizado no município de Uberaba, MG.

O solo da área experimental pertence à classe textural Franco Argilo Arenosa. Para se avaliar a fertilidade do solo foram coletadas amostras de solo, com a profundidade de 0 – 20 cm, cujas características químicas foram analisadas pelo Laboratório de Análise de Solo da Empresa de Pesquisa Agropecuária de Minas Gerais – EPAMIG, em Uberaba, MG. Os resultados da análise química do solo foram: M.O. (g kg⁻¹)= 21,0; pH em água= 4,66; P (mg dm⁻³)= 39,33; K (mmolc dm⁻³)=1,49; Ca²⁺ (mmolc dm⁻³)= 12,53; Mg²⁺ (mmolc dm⁻³)= 3,48; Al³⁺ (mmolc dm⁻³)= 4,06; H + Al (mmolc dm⁻³)= 32,66; SB (mmolc dm⁻³)= 17,49; CTC (mmolc dm⁻³)= 50,16; V%= 34,55.

A área foi preparada por meio de preparo convencional, com aração, gradagem e levantamento dos canteiros. Os canteiros foram levantados com rotoencanteirador tratorizado, com largura de 1,1 m e altura de 0,2 m. O gesso foi aplicado nas parcelas em área total, sem realização de incorporação. Já para a incorporação dos fertilizantes foram feitos, em cada canteiro, dois sulcos para a aplicação, com posterior incorporação dos mesmos.

As correções do solo seguiram a recomendação oficial para o Estado de Minas Gerais, sugerida por Fontes (1999). Na adubação de plantio, foram aplicados 50 kg ha $^{-1}$ de P_2O_5 , utilizando-se como fontes o superfosfato simples; e, 20% de cada uma das doses de K_2O e 20% da dose recomendada de N, utilizando-se como fonte cloreto de potássio e ureia, respectivamente. As adubações de cobertura foram realizadas aplicando-se o nitrogênio e as doses de K_2O da seguinte forma: 20% na primeira cobertura, aos 15 dias após o transplante (DAT); 30% na segunda adubação de cobertura, aos 30 DAT; e, 30% na terceira adubação de cobertura, aos 45 DAT.

As sementes da cultivar Sharon foram produzidas em bandejas de 128 células, sob estufa, recebendo de 4 a 5 irrigações ao dia. As mudas foram transplantadas para o local definitivo de cultivo, em 05/11/2014, aos 34 dias após a semeadura, quando apresentavam de 4 a 5 folhas definitivas.

Foram realizadas adubações foliares de boro e molibdênio, durante a fase de mudas (20 dias após a semeadura) e, aos 15 e 30 dias após o transplante, utilizando-se a concentração de ácido bórico de 0,1% (1 g L⁻¹) e de molibdato de amônio de 0,05% (0,5 g L⁻¹), segundo Raij et al. (1992). Devido à alta cerosidade das folhas, foi realizado o acréscimo de espalhante adesivo na calda, para maior eficiência da operação.

Tratamentos e amostragens

O experimento foi instalado em esquema fatorial 5x5, sendo 5 níveis de potássio $(0, 100, 180, 240 e 360 kg de K_2O ha^{-1}) e 5 níveis para doses de gesso <math>(0, 500, 1000, 2000 e 4000 kg ha^{-1})$ no delineamento em blocos completos casualizados com 3 repetições. A unidade experimental foi constituída de 14 plantas, dispostas em canteiros, no espaçamento de 0,80 m entre linhas e 0,50 entre plantas. Como parcela útil, consideraram-se as 10 plantas centrais de cada parcela.

A colheita foi iniciada em 10 de janeiro de 2015, realizada quando as inflorescências apresentavam-se totalmente desenvolvidas, com os botões florais ainda unidos (cabeça compacta e ainda firme), realizando-se o corte no colo da planta e deixando-se algumas folhas para a sua proteção durante o transporte até o laboratório, as quais foram removidas antes da pesagem.

No laboratório, as cabeças foram avaliadas quanto à massa da cabeça — MC- (kg cbç⁻¹); diâmetro da cabeça — DC- (cm); diâmetro do pedúnculo — DP- (cm) e altura da cabeça — AC- (cm).

Análise estatística

Para a análise dos dados experimentais foi utilizada a análise de regressão múltipla, a qual é empregada para predizer uma resposta quantitativa quando se tem múltiplas variáveis explicativas. Neste caso as variáveis respostas são as variáveis

de produção - MC, DC, AC, DP - e as variáveis explicativas, ou preditores, são os efeitos lineares, os efeitos quadráticos e o efeito da interação - G,

K, G^2 , K^2 , GK- das doses de gesso (G) e potássio (K). A ideia geral é que para cada uma das variáveis respostas será ajustado um modelo de regressão a fim de explicar o seu comportamento em função das variáveis explicativas.

Para seleção do modelo de regressão foram obtidos os melhores modelos para cada um dos tamanhos possíveis do modelo — 1, 2, 3, 4 e 5 -, de acordo com o método backward stepwise selection (James et. al, 2013).

O backward stepwise selection fornece uma eficiente alternativa para seleção dos melhores subconjuntos de variáveis em uma análise de regressão. O método começa com todos os *p* preditores, no modelo e sequencialmente deleta os preditores com menor impacto no modelo, um por vez. Aqui, o "impacto" do preditor é medido pela soma de quadrados de resíduos. Menores valores para a soma de quadrados de resíduos estão associados a uma maior importância do preditor.

Após a seleção do melhor modelo via backward stepwise selection, foi feito o teste t para os coeficientes do modelo a fim de verificar se estes eram significativos. Vale ressaltar que um modelo deve ter todos os coeficientes significativos para que este seja um modelo explicativo.

Adicionalmente foi obtido o critério de informação bayesiano (BIC), que é uma medida da qualidade de ajuste do modelo, para cada um dos modelos e em cada uma das variáveis respostas. Os melhores modelos são aqueles com baixo valor para o BIC. Outra informação importante na escolha do melhor modelo é a parcimônia, isto é, devem ser escolhidos modelos explicativos, com boa qualidade de ajuste e que sejam o mais simples possível.

Para os modelos que foram significativos foi plotado o referido modelo ajustado.

Todas as análises foram feitas utilizando o software R (R Core Team, 2014).

RESULTADOS E DISCUSSÃO

Os melhores modelos via backward stepwise selection, na variável massa da cabeça, para cada um dos possíveis tamanhos – 1, 2, 3, 4 e 5 – estão apresentados na Tabela 1. É importante ressaltar que o modelo de tamanho 5 corresponde a superfície de resposta completa, isto é:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_2^2 + B_5 X_1 X_2 + \varepsilon,$$

Onde Y é a variável resposta X_1 e X_2 são as doses de gesso (em kg ha $^{-1}$) e potássio (em kg de K_2O ha $^{-1}$) respectivamente, e $\mathcal E$ são os erros aleatórios do modelo. Assim, por exemplo, para a massa da cabeça (MC), o melhor modelo de tamanho 1 tem-se apenas o efeito linear do

potássio, e o melhor modelo de tamanho 2 expressa os efeitos linear e quadrático do potássio (Tabela 1). O mesmo raciocínio é utilizado para as características avaliadas e para os demais tamanhos de modelo.

Os modelos selecionados ajustados para a variável massa da cabeça estão apresentados na Tabela 2. Nota-se que apenas o modelo de tamanho 1 foi significativo pelo teste t a 5% de probabilidade ($p-valor<\alpha$). Este modelo poder ser escrito da seguinte maneira:

$$\hat{Y} = 0.5412 + 0.0002848X$$
,

em que \hat{Y} é o peso da cabeça estimado e X são as doses de potássio. Assim, de acordo com a equação ajustada, verifica-se na Figura 1, que a maior massa da cabeça (0,643 kg cbç⁻¹), foi obtida com a maior dose de potássio (360 kg ha⁻¹), dentro do o intervalo $0 \le X \le 360$.

A máxima massa da cabeça do presente trabalho foi 17% inferior aos valores relatados por Castoldi et al. (2009), que ao avaliarem o crescimento da cultivar Verona, verificaram massa comercial da cabeça de 0,77 kg cbç¹. Esta diferença pode estar relacionada à diferença de cultivares e condições edafoclimáticas de cultivo. No entanto, vale destacar que, pelo fato do presente experimento ter sido realizado no verão, a qual é uma época inadequada para a produção de couve-flor, devido às altas temperaturas, as doses de K₂O acima de 210 kg ha¹ proporcionaram cabeças de couve-flor com mais de 0,6 kg (Figura 1A), as quais podem ser consideradas de excelente qualidade para a época.

Os modelos ajustados selecionados para as demais variáveis – diâmetro da cabeça (DC); altura da cabeça (AC) e diâmetro do pedúnculo (DP) - estão apresentados na Tabela 3. Estes foram obtidos usando o mesmo raciocínio utilizado para a variável massa da cabeça.

O melhor modelo ajustado que descreve o diâmetro da cabeça está apresentado na Tabela 3. Este modelo poder ser escrito da seguinte maneira:

$$\hat{Y} = 017.1 + 0.00175X$$

em que \hat{Y} é o diâmetro da cabeça estimado e X são as doses de potássio. Verifica-se que quanto maiores as doses de potássio, maiores foram os diâmetros das cabeças de couve-flor obtidos, sendo que o diâmetro máximo (17,73 cm) fora obtido na dose de 360 kg ha $^{-1}$. Vale destacar que esta é uma importante característica no mercado da cultura, visto que os consumidores demandam por cabeças de grandes dimensões.

Para a característica diâmetro do pedúnculo o melhor modelo é descrito a seguir

 $\hat{Y} = 2,49 + 0,0000313X_1 + 0,00185X_2 - 0,00000311X_2^2$

em que, \hat{Y} é o DP estimado, X_1 são as doses de gesso e X_2 são as doses de potássio. Pelo modelo

ajustado, tem-se que o gesso exerce influência linear e o potássio tem um efeito quadrático no diâmetro do pedúnculo. Assim, maiores valores de DP são obtidos com maiores doses de gesso no intervalo $0 \le X_1 \le 4000$ e para uma dose de potássio de aproximadamente 295 kg ha $^{-1}$ (Figura 2A), cujo valor fora obtido diferenciando-se o modelo descrito acima com relação a X_2 .

Com relação altura da cabeça (AC) o modelo ajustado que melhor descreve os resultados obtidos pode ser escrito da seguinte maneira (Tabela 3):

 $\hat{Y} = 11.8 + 0.000143X_1 + 0.00623X_2 - 0.000014X_2^2$

em que, \hat{Y} é a AC estimada, X_1 são as doses de gesso e X_2 são as doses de potássio. Pelo modelo, tem-se que à medida em que se aumenta a dose de gesso a altura da cabeça aumenta linearmente no intervalo das doses estudadas, e que, com relação ao potássio, a máxima altura de cabeça é obtida na dose de 222,50 kg ha $^{-1}$ (Figura 2B).

CONCLUSÕES

Conclui-se que, para as condições do presente trabalho, recomenda-se a aplicação de 360 kg ha⁻¹ de K₂O, e de até 4 toneladas de gesso por hectare.

REFERÊNCIAS

CASTOLDI, R; CHARLO, HCO; VARGAS, PF; BRAZ, LT. Crescimento, acúmulo de nutrientes e produtividade da cultura da couve-flor. Horticultura Brasileira. 2009, vol.27, n.4, pp. 438-446.

FONTES P. C. R. Recomendações para o uso de corretivos e fertilizantes em Minas Gerais – 5ª Aproximação – Viçosa, MG, p. 177. 1999.

JAMES, G., WITTEN, D., HASTIE, T., TIBSHIRANI, R. An Introduction to Statistical Learning: with aplications in R, 2013, Springer, 426 p.

RAIJ, B. van; SILVA, N.M. da; BATAGLIA, O.C.; QUAGGIO, J.A; HIROCE, R.; CANTARELLA, H.; BELINAZZI, R.; DECHEN, A.R.; TRANI, P.E. Recomendações de adubação e calagem para o Estado de São Paulo. Campinas: IAC, p.107, 1992. (Boletim Técnico, 100).

R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. 2014, Vienna, Austria (http://www.r-project.org).

Tabelas e Figuras

Tabela 1. Modelos de regressão selecionados via backward stepwise selection para cada um dos possíveis tamanhos do modelo na característica massa da cabeça. IFTM. Uberaba, 2015.

	Variáveis explicativas				
Tamanho do modelo	G	K	G^2	K^2	G*K
1	""	"x"	""	""	""
2	""	"x"	""	"x"	""
3	"x"	"x"	""	"x"	""
4	"x"	"x"	""	"x"	"x"
5		"x"		"x"	"x"
1 2 1 1 1/1					

^{*} G=doses de gesso; K=doses de potássio.

Tabela 2. Ajuste dos modelos selecionados para a característica massa da cabeça via backward stepwise selection e teste t para os coeficientes dos modelos ajustados. IFTM. Uberaba, 2015.

modelic	o ajao	taaoo. II Tik	n. Oboraba,			
		Estimativa	Erro-padrão	tc	p-valor	-
Mod. 1	Int.	0.5412091	0.0157922	34.271	<2.0E-16**	Ī
	K	0.0002848	0.0000737	3.864	0.000239**	
Mod. 2	Int.	5.27E-01	1.91E-02	27.57	<2E-16**	
	K	5.83E-04	2.36E-04	2.47	0.0159*	
	K^2	-8.28E-07	6.23E-07	-1.33	0.1879	
Mod. 3	Int.	5.15E-01	2.13E-02	24.225	<2E-16**	
	G	7.77E-06	6.32E-06	1.23	0.2228	
	K	5.83E-04	2.35E-04	2.479	0.0155*	
	K^2	-8.28E-07	6.21E-07	-1.334	0.1864	
Mod. 4	Int.	5.00E-01	2.52E-02	19.829	<2E-16**	
	G	1.77E-05	1.11E-05	1.603	0.11346	
	K	6.68E-04	2.47E-04	2.701	0.00866**	
	K^2	-8.28E-07	6.20E-07	-1.336	0.18583	
	G*K	-5.65E-08	5.16E-08	-1.096	0.27678	
Mod.	Int.	4.98E-01	2.77E-02	18	<2E-16**	
	G	2.25E-05	2.59E-05	0.869	0.38762	
	K	6.68E-04	2.49E-04	2.683	0.00914	
	G^2	-1.16E-09	5.66E-09	-0.204	0.83889	
	K^2	-8.28E-07	6.24E-07	-1.327	0.1889	
	G*K	-5.65E-08	5.19E-08	-1.089	0.28012	

Mod.= Modelo; Int.= Intercepto; G=doses de gesso; K=doses de potássio. Na tabela "*" indica significativo a 5 % e "**" indica significativo a 1 %.

Tabela 3. Modelos ajustados selecionados, teste t, para os coeficientes e critério de informação bayesiano (BIC) para diâmetro da cabeça (DC), diâmetro do pedúnculo (DP) e altura da cabeça (AC). IFTM. Uberaba, 2015.

1		0. a.o.a,	<u> </u>		
	·	Estimativa	Erro padrão	tc	p-valor
DC	Intercepto	1,71E+01	1,94E-01	88.123	<2e-16 **
	K	1,75E-03	9.03E-04	1.939	0.0564
-	BIC=4,87				
DP	Intercepto	2,49	3,68E-02	67.637	<2e-16**
	G	3,13E-05	1,09E-05	2.865	0.00549 **
	K	1,85E-03	4,07E-04	4.551	0.0000215 **
	K^2	-3,11E-06	1.07E-06	-2.894	0.00505 **
	BIC=- 22,82				
AC	Intercepto	1,18E+01	2.32E-01	50.641	<2e-16 **
	G	1,43E-04	6.90E-05	2.076	0.0415 *
	K	6,23E-03	2.57E-03	2.424	0.0179 *
_	K^2	-1,40E-05	6.78E-06	-2.06	0.0431 *
_	BIC=6.65				

Na tabela "*" indica significativo a 5 % e "**" indica significativo a

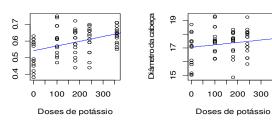
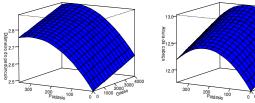



Figura 1. Modelos ajustados, selecionados por backward stepwise selection, teste t e critério de informação bayesiano para a massa da cabeça (1A) e diâmetro da cabeça (1B) em plantas de couve-flor, cultivadas sob diferentes doses de gesso e potássio.

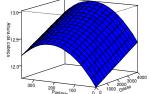


Figura 2. Modelos ajustados, selecionados por backward stepwise selection, teste t e critério de informação bayesiano para diâmetro do pedúnculo (2A) e altura da cabeça (2B) em plantas de couveflor, cultivadas sob diferentes doses de gesso e potássio.