

Nitrato e Amônio em Cana-de-açúcar Adubada com Nitrogênio e Molibdênio⁽¹⁾.

<u>Rafaela Muniz Barbosa</u>⁽²⁾; Renato Lemos dos Santos⁽³⁾; Fernando José Freire⁽⁴⁾; Emídio Cantídio Almeida de Oliveira⁽⁴⁾; Patrícia da Costa Bezerra⁽⁵⁾; Monalisa Barbosa da Costa Santos⁽⁶⁾.

(1) Trabalho executado com recursos do CNPq, da FACEPE, CAPES e IFPE.

⁽²⁾ Estudante de Agronomia do Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco (IFPE) Campus Vitória de Santo Antão; Vitória de Santo Antão; Pernambuco; raf.munizsz@gmail.com; ⁽³⁾ Professor do IFPE Campus Vitória de Santo Antão; Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco; ⁽⁴⁾ Professor da Universidade Federal Rural de Pernambuco (UFRPE); Universidade Federal Rural de Pernambuco; ⁽⁵⁾ Estudante de Agronomia da UFRPE; Universidade Federal Rural de Pernambuco; ⁽⁶⁾ Doutoranda no Programa de Pós-graduação em Tecnologias Energéticas e Nucleares/UFPE; Universidade Federal de Pernambuco.

RESUMO: A cana-de-açúcar é uma cultura que até hoje tem significativa participação na economia nacional. Assim, centros de melhoramento vegetal, anualmente, selecionam novos híbridos resistentes a pragas e doenças e com elevada capacidade produtiva. Deste torna-se modo, evidente desencadeamento de pesquisas em busca de uma adubação adequada, que se possibilite desenvolvimento do potencial produtivo genótipos. Quando o nitrogênio (N) é oferecido em quantidades adequadas à cultura, produtividade e a longevidade do canavial. O molibdênio (Mo) é um nutriente que tem relação direta com a absorção de N, por atuar como, regulador da atividade da redutase do nitrato (ARN), podendo elevá-la ou reduzi-la. Nesse contexto. este trabalho objetivou avaliar o efeito da adubação nitrogenada e molíbdica nos teores de nitrato e amônio na folha +1 e nas raízes de variedades de cana-de-açúcar, no ciclo de cana planta. Para isso, cultivaram-se duas variedades de cana-de-açúcar (RB92579 e RB867515) submetidas a duas doses de N (0 e 60 kg ha^{-1}) e duas dose de Mo (0 e 200g ha^{-1}). Aos 70, 100, 130 e 200 dias após plantio (DAP) determinou-se os teores de nitrato e amônio em folha +1 e nas raízes das plantas. A aplicação de Mo reduziu os teores de nitrato na folha +1 e nas raízes da RB92579 e aumentou na RB867515, sugerindo que as rotas metabólicas de assimilação de N das variedades são antagônicas. Os teores de amônio nas raízes foram maiores na RB92579.

Termos de indexação: *Saccharum spp.*, nutrição, assimilação de N.

INTRODUÇÃO

A cana-de-açúcar (Saccharum spp.) é uma cultura que até a atualidade tem importância comprovada na economia nacional. Devido a sua importância, anualmente centros de melhoramento vegetal espalhados pelo país, selecionam híbridos

de alta produtividade, alto teor de sacarose, baixos teores de fibras e resistência a pragas e doenças (Vitti et al., 2007).

Assim, o maior conhecimento sobre a nutrição mineral desses genótipos torna-se evidente, em especial à absorção de nitrogênio (N). O manejo inadequado da adubação nitrogenada em um agrossistema canavieiro, entre outros fatores, pode levar a redução da produtividade e longevidade da cultura (Vitti et al., 2007).

A cana-de-açúcar absorve o N do solo preferencialmente nas formas amoniacais $(N-NH_4^+)$ e nítricas $(N-NO_3^-)$, todavia em solos aerados a forma nítrica é predominante (Armas et al., 1992; Robinson et al., 2011)

O N - NO $_3^-$ absorvido pelas raízes da cana pode ser assimilado, dependendo de sua disponibilidade e espécime vegetal, no próprio órgão citado ou em órgãos aéreos. Durante a assimilação, no citossol, o N - NO $_3^-$ é reduzido a NO $_2^-$ pela redutase do nitrato, que por sua vez é reduzido a amônio pela redutase do nitrito nos plastídeos da raiz ou nos cloroplastos (Carvalho et al., 2006).

O molibdênio (Mo) é um nutriente essencial para atividade da redutase do nitrato (ARN) por agir como agente regulador, podendo elevar ou reduzir a ARN nos tecidos das plantas (Li-Ping et al., 2007). Quando uma planta está deficiente de Mo, seu metabolismo é alterado em relação ao N, em especial quando a forma predominante de N é nítrica, havendo redução da assimilação de N, ocasionando redução de crescimento e produtividade (Kaiser et al., 2005).

Visto que a plantas acumulam e assimilam preferencialmente o $\rm N-NO_3^-$ ao $\rm N-NH_4^-$, pode-se observar comportamento inverso em seus teores no tecido vegetal, podendo ser indicativo da preferência e utilização de N pelas plantas.

Assim, neste trabalho objetivou-se avaliar o efeito da adubação nitrogenada e molíbdica nos teores de nitrato e amônio na folha +1 e nas raízes de

variedades de cana-de-açúcar no ciclo de cana planta.

MATERIAL E MÉTODOS

Foi conduzido um experimento em campo na Estação Experimental de Cana de Açúcar de Carpina, no município de Carpina - PE, em um ARGILOSSO VERMELHO AMARELO distrocoeso, no período de março de 2013 a março de 2014. Utilizaram-se duas variedades de cana-de-açúcar, a RB92579 e a RB867515, por terem grandes áreas de cultivo no Nordeste do Brasil (Chapola et al., 2012). As variedades foram submetidas a duas doses de N (0 e 60 kg ha⁻¹) e duas doses de Mo (0 e 200 g ha⁻¹), seguindo os estudos de interação da adubação nitrogenada e molíbdica em culturas de cana de açúcar (Oliveira, 2012). Utilizou-se ureia como fonte de N e molibdato de sódio como fonte de Mo. O delineamento experimental foi em blocos ao acaso, onde o arranjo fatorial de tratamentos deu-se em (2 x 2 x 2), com quatro repetições, totalizando 32 unidades experimentais. Aos 70, 100, 130 e 200 dias após plantio (DAP) foi feita a avaliação dos teores de N (NO₃ e NH₄) na folha +1 e nas raízes das variedades de cana-de-açúcar. Para determinação dos teores de NO₃ e NH₄ na folha +1 e nas raízes das variedades, coletaram-se, aleatoriamente, três folhas +1 e uma porção de raiz por parcela. Os tecidos vegetais coletados foram secos em estufa de circulação de forçada de ar a 65 °C e triturados em moinho de facas. As formas inorgânicas de N (NO₃ e NH₄) na folha +1 e nas raízes foram extraídas com KCl 1 mol L⁻¹ e determinadas em destilador de arraste de vapores de Kjedahl (Tedesco et al., 1995). Os teores de nitrato e amônio na folha +1 e nas raízes foram avaliados estatisticamente considerando-se variedades e as doses de N e Mo, como medidas repetidas de tempo. Para isso, utilizou-se o pacote estatístico SAS Learning 2.0, procedendo para o modelo misto, no qual, foi selecionado o teste de covariância [AR (1), Ante (1), ARH (1), ARMA (1), CS, CSH, HF, TOEP, Lin (1) UN], onde apresentou valor menor ao critério de Akaike (Wolfinger & Chang, 1995). Nas variáveis em que se observou efeito significativo (p<0,05) foi aplicado o teste de comparação de média de Tukey a 5% probabilidade.

RESULTADOS E DISCUSSÃO

Os teores de nitrato na folha +1 e nas raízes das variedades de cana independentemente dosagens aplicadas de N e Mo não se ajustaram a nenhum modelo de regressão existente (Tabela 1). O teor de nitrato na folha +1 das variedades de cana de açúcar foi superior aos encontrados nas raízes. O nitrato na folha +1 das variedades não se apresentou estatisticamente diferente, embora a variedade RB92579 tenha apresentado um teor menor (Tabela 1). Todavia, nas raízes a diferença se evidenciou e o teor de nitrato da RB92579, foi significativamente menor em comparação variedade RB867515. Ainda, a aplicação de Mo reduziu o teor de nitrato tanto na folha +1 quanto nas raízes da variedade RB92579 (Tabela 1). Entretanto, o inverso ocorreu com a RB867515, ou seja, a aplicação de Mo, tanto na folha +1, quanto nas raízes fez com que houvesse um acúmulo de nitrato (Tabela 1). A adição de N na variedade RB92579, com a presença ou ausência do Mo incrementou o teor de nitrato nas variedades de cana. Na variedade RB867515, a adição de N na ausência ou presença de Mo, não mostrou-se interferir significativamente nos teores de nitrato, tanto na folha +1 quanto na raiz desta variedade. Ao adicionar-se Mo e o N ocorreu-se uma significativa diminuição dos teores de nitrato nos compartimentos vegetais avaliados (Tabela 1).

Os teores de amônio das variedades na folha +1 não diferiram, assim não houve diferença no acumulo de amônio, no órgão, entre as variedades estudadas (Tabela 2). No entanto, nas raízes constatou-se maior teor de amônio na variedade RB92579 em relação a RB867515. Como já esperado, a adição de Mo não interferiu nos teores de amônio na folha +1 e nas raízes das variedades (Tabela 2). Em suma, a aplicação de Mo não interferiu na assimilação de N, quando a fora de incorporação em aminoácidos e proteínas foi o amônio. Assim, o teor de amônio compartimentos vegetais avaliados independeu da variedade e adição de Mo e de N (Tabela 2). Embora, em um curto espaço de tempo a adição de N proporcionou uma maior quantia de amônio, em detrimento ao nitrato (Lorensini et al., 2014).

CONCLUSÕES

A aplicação de Mo reduziu os teores de nitrato na folha +1 e nas raízes da RB92579 e aumentou na RB867515, sugerindo que as rotas metabólicas de assimilação de N das variedades são antagônicas.

Os teores de amônio na folha +1 das variedades não diferiram, enquanto que nas raízes constatouse maior nível de amônio na variedade RB92579 em relação à variedade RB86515.

AGRADECIMENTOS

Ao IFPE *Campus* Vitória de Santo Antão; a FACEPE, pela concessão da bolsa de iniciação cientifica; ao meu orientador; e por fim ao Grupo de Pesquisa Fertilidade do Solo e Agroenergia.

REFERÊNCIAS

CARVALHO, P. G. de; AIDAR, M.; et al. Aspectos do crescimento e atividade da redutase do nitrato em plantas de Vemonia herbacea (Vell.) Rusby submetidas a diferentes fontes de nitrogênio. Hoehnea, v. 33, n. 1, p. 89-97, 2006.

CHAPOLA et al., R. G. Censo variental 2012. Araras: CCA-UFSCar, 2012. p. 55.

KAISER, B. N. et al. The role of molybdenum in agricultural plant production. Annals of Botany, v. 96, p. 745-754, 2005.

LI-PING, W; YANG-RUI, L.; LI-TAO, Y. effects of molybdenum on nitrogen metabolism of sugarcane. Sugar Tech, v. 9, n. 1, p. 36-42, 2007.

LORENSINI, F. et al. Disponibilidade de nitrogênio de fontes minerais e orgânicas aplicadas em um argissolo cultivado com videira. Revista Ceres, v. 61, n. 2, p. 241-247, 2014.

OLIVEIRA, A. C. de. Interação da adubação nitrogenada e molíbdica em cana-de-açúcar. [s.l.] Universidade Federal Rural de Pernambuco – Recife, 2012.

TEDESCO, M. J., et al. Analises de solos, plantas e outros materiais. 2°ed. Porto Alegre, UFRGS. 1995. 174p. (Boletim Técnico, 5).

VITTI, A. C.; TRIVELIN, P. C. O.; GAVA, G. J. C.; et al. produtividade da cana-de-açúcar relacionada ao nitrogênio residual da adubação e do sistema radicular. Pesquisa Agropecuária Brasileira, v. 42, n. 2, p. 249-256, 2007.

Tabela 1- Teor de nitrato na folha +1 e nas raízes das variedades de cana-de-açúcar RB867515 e RB92579 na ausência e presença de molibdênio e na ausência e presença de nitrogênio aos 70, 100, 130, 200 diasapós o plantio (DAP).

130, 200 u	iasapus u į	piantio (DAF).								
				Folha +1							
		RB86	7515	RB92579							
Fator	S/Mo		C/Mo		S/Mo		C/Mo				
	S/N	C/N	S/N	C/N	S/N	C/N	S/N	C/N			
DAP		mg kg ⁻¹									
70	320,55	367,97	295,55	303,33	2,55	527,36	70,00	280,00			
100	47,33	0,00	256,67	46,67	495,14	230,25	46,67	0,00			
130	172,96	123,95	762,22	210,00	233,95	186,29	116,67	303,33			
200	47,29	0,00	0,00	0,00	1,04	46,04	11,67	11,67			
\overline{N}	147,03 a	122,98 a	328,61 a	140,00 b	183,17 a	247,48 a	61,25 b	148,75 a			
Mo	135,	135,01 b 234,3		30 a	215	215,33 a		105,00 b			
Variedade		184,	65 a		160,16 a						
		·		Raiz		ŕ					
		RB86	37515		RB92579						
Fator	S/Mo		C/Mo		S/Mo		C/Mo				
	S/N	C/N	S/N	C/N	S/N	C/N	S/N	C/N			
DAP	mg kg ⁻¹										
70	66,93	51,78	280,00	46,67	0,00	373,39	140,00	326,67			
100	46,02	257,74	536,67	46,67	0,00	305,19	140,00	0,00			
130	348,68	235,53	357,78	210,00	222,18	70,02	46,67	93,33			
200	77,06	94,52	11,67	0,00	116,82	46,58	46,67	46,67			
\overline{N}	134,67 a	159,89 a	296,53 a	75,83 b	84,75 b	198,79 a	93,33 a	116,67 a			
\overline{Mo}	147,28 b		186,18 a			141,77 a		105,00 b			
Variedade	,		73 a		•	123,39 b					

 $\overline{\text{N}}$: média de N; $\overline{\text{Mo}}$: média de Mo; $\overline{\text{Variedade}}$: média das variedades; Par de letras minúsculas iguais na linha não diferem pelo teste de Tukey a5% de probabilidade.

Tabela 2- Teor de amônio na folha +1 e nas raízes das variedades de cana-de-açúcar RB867515 e RB92579 na ausência e presença de Mo e na ausência e presença de N aos 70, 100, 130 e 200 dias após plantio (DAP).

				Folha +1							
		RB86	7515			RB92579					
Fator	S/Mo		C/Mo		S/Mo		C/Mo				
	S/N	C/N	S/N	C/N	S/N	C/N	S/N	C/N			
DAP	mg kg ⁻¹										
70	260,33	343,89	116,67	140,00	196,39	246,16	291,67	245,00			
100	158,11	137,76	140,00	155,55	153,54	141,21	268,33	155,55			
130	240,09	257,07	280,00	326,67	256,86	209,88	221,67	221,67			
200	95,52	66,35	46,67	46,67	50,31	67,81	58,33	93,33			
\overline{N}	188,51 a	201,27 a	145,83 a	167,22 a	164,27 a	166,26 a	210,00 a	178,89 a			
Mo	194,	89 a	156,	156,53 a		165,27 a		194,44 a			
Variedade		175,	71 a			179,86 a					
				Raiz							
	RB867515				RB92579						
Fator	S/Mo		C/Mo		S/Mo		C/Mo				
	S/N	C/N	S/N	C/N	S/N	C/N	S/N	C/N			
DAP	mg kg ⁻¹										
70	157,62	152,12	210,00	116,67	188,09	279,14	186,67	210,00			
100	187,67	153,88	171,11	217,78	208,32	211,00	210,00	264,44			
130	232,14	258,66	256,67	295,55	179,98	330,68	163,33	291,67			
200	190,56	133,51	62,22	155,55	167,68	198,06	140,00	93,33			
\overline{N}	192,00 a	174,54 a	175,00 a	196,39 a	186,02 b	254,72 a	175,00 a	214,86 a			
$\overline{\text{Mo}}$	183,27 a 185,69 a				220,37 a 194,93 a						
Variedade		184,	48 b			207,65 a					

N: média de N; Mo: média de Mo; Variedade: média das variedades; Par de letras minúsculas iguais na linha não diferem pelo teste de Tukey a 5% de probabilidade.