

Uso agrícola do lodo de estação de tratamento de água: efeito na fertilidade do solo⁽¹⁾.

<u>Isabella Menuzzo Lucon</u>⁽²⁾; Ronaldo Severiano Berton⁽³⁾; Aline Renée Coscione ⁽⁴⁾.

(1) Trabalho executado com recursos da CAPES – Coordenação de aperfeiçoamento de pessoal de nível superior.
(2) Doutoranda; Centro de Solos e Recursos Ambientais; Instituto Agronômico; Av. Barão de Itapura, 1481, Campinas, SP, CEP:13020-902; isabellamlucon@gmail.com; (3) Pesquisador; Instituto Agronômico; (4) Pesquisadora; Instituto Agronômico.

RESUMO: A baixa qualidade da água bruta captada e a exigência de fornecimento de água com boa qualidade para a população geram um significativo aumento na produção de rejeitos de lodo provenientes das Estações de Tratamento de Água (ETA). Atualmente, no Brasil, o lodo de estação de tratamento de água (LETA) tem como alternativa de destino final os aterros sanitários levando, dessa forma, à diminuição da vida útil dos mesmos, à degradação do meio ambiente e ao desperdício de um material que poderia ser reaproveitado. Desta forma há a necessidade de se conhecer melhor as características dos resíduos de ETA e alternativas de manejo, tratamento e disposição final destes. Para avaliar o uso agronômico de LETA, em casa de vegetação, cultivou-se milho em vaso por 48 dias, adicionando-se N na forma de NH₄NO₃ e proveniente do LETA combinadas entre si (4 doses de LETA x 4 doses de NH₄NO₃) num total de 16 tratamentos. Foram avaliados os efeitos do lodo de ETA na fertilidade do solo, que provocou aumento discreto no teor de matéria orgânica, aumento do pH e diminuição nos teores de P disponível.

Termos de indexação: matéria orgânica; biossólido; reciclagem de resíduos.

INTRODUÇÃO

Nos centros urbanos, as companhias de saneamento estão cada vez mais preocupadas com qualidade da água a ser distribuída à população. Com o aumento de impurezas na água captada para tratamento e redistribuição, há a necessidade de se aplicar mais produtos químicos, aumentando também os rejeitos e o lodo proveniente das Estações de Tratamento de Água (ETA).

O lodo de ETA (LETA) é formado através do tratamento de água em um processo de coagulação, tendo composição química parecida com a da água bruta mais produtos floculantes/coagulantes aplicados nos processos. Os produtos mais utilizados são o cloreto férrico, sulfato de alumínio e policloreto de alumínio (PAC).

Historicamente, os resíduos gerados nas ETA têm sido lançados nos cursos d'água. Com a constante atualização da legislação ambiental e de recursos hídricos do país, a intensificação da ação fiscalizadora dos órgãos ambientais e a crescente

degradação dos corpos receptores, as ETA que realizam o tratamento destes resíduos têm aumentado, ainda que de forma incipiente. Entretanto, a atenção, o conhecimento e a discussão das implicações quanto "ao que fazer com esses resíduos", ainda é muito recente, permanecendo o desafio de se conhecer as alternativas de manejo, tratamento e disposição final destes resíduos (Barroso & Cordeiro, 2001).

Alguns benefícios associados à aplicação de LETA em solos agrícolas como condicionador de solo são: melhoria estrutural, ajuste de pH, aumento da capacidade de retenção de água e melhoria das condições de aeração do solo. No entanto, a taxa de aplicação do LETA deve ser controlada como ocorre com o LETE e outros resíduos, conforme a composição de cada um. No caso do lodo de ETA, o principal fator de controle é a quantidade de ferro e alumínio, pois tanto um como o outro se combinam com o fósforo, reduzindo sua absorção pelas plantas (Sabagg, 2004).

Atualmente, no Brasil, o lodo de ETA tem como alternativa de destino final os aterros sanitários, diminuindo a vida útil dos mesmos, degradando o ambiente e desperdiçando um material que poderia ser reaproveitado. Projetos para a utilização do LETA têm sido desenvolvidos no Brasil visando diminuir os impactos negativos de seu descarte.

O objetivo do trabalho foi avaliar os efeitos do uso agrícola do LETA quando aplicado isoladamente e em complementação mineral.

MATERIAL E MÉTODOS

O experimento foi conduzido em casa de vegetação no Instituto Agronômico, Centro de Pesquisa e Desenvolvimento do Solo e Recursos Agroambientais, Campinas/SP.

Na montagem dos vasos foram utilizados para cada vaso 3 kg de solo classificado como Latossolo Vermelho Amarelo Distrófico plíntico, textura francoargiloarenosa, pH_(CaCl2) 4,8. O milho utilizado foi o híbrido IAC 8333.

Tratamentos e amostragens

O experimento foi realizado com 16 tratamentos (Tabela 1) e quatro repetições, totalizando 64 vasos. As quantidades de lodo de ETA aplicadas foram determinadas pela concentração de N

Kjeldahl (total) presente no mesmo. As doses foram aplicadas conforme cada tratamento, correspondentes a 0, 33,15, 66,30 2 99,45 g de LETA por vaso e equivalentes à aplicação de 0 , 22, 44, 66 t ha⁻¹ de LETA respectivamente. A aplicação de nitrato de amônio também respeitou as doses de 0, 200, 400 e 600 mg de N/vaso.

Na montagem dos vasos, foi realizada a adubação básica de 500 mg de P/vaso como superfosfato simples, 700mg de K/vaso como K₂SO₄, 200 mg de Mg como MgSO₄, uma solução contendo 0,5 mg/dm³ de B, 1 mg/dm³ de Cu, 3 mg/dm³ de Mn, 2 mg/dm³ de Zn e 0,05 mg/dm³ de Mo nas formas de H_3BO_3 , CuSO₄.5H₂O, MnSO₄.1H₂O, $ZnSO_4.7H_2O$, Na₂MoO₄.2H₂O respectivamente e, separadamente, uma solução com 3 mg/dm3 de Fe na forma de Fe-EDTA.

Tabela 1. Doses de N aplicadas através do lodo de ETA e de nitrato de amônio.

TRATAMENTO	LODO	NITRATO DE	N TOTAL			
TICATAMENTO	LODO	AMÔNIO	APLICADO			
	Nitrogênio (mg/vaso)					
L0M0	0	0	0			
L0M1	0	200	200			
L0M2	0	400	400			
L0M3	0	600	600			
L1M0	200	0	200			
L1M1	200	200	400			
L1M2	200	400	600			
L1M3	200	600	800			
L2M0	400	0	400			
L2M1	400	200	600			
L2M2	400	400	800			
L2M3	400	600	1000			
L3M0	600	0	600			
L3M1	600	200	800			
L3M2	600	400	1000			
L3M3	600	600	1200			

O LETA foi misturado ao solo no processo de montagem dos vasos, garantindo sua incorporação.

O tempo de incubação de solo + lodo + adubação básica foi de 15 dias. Após esse período, foram semeadas 10 sementes de milho/vaso, fazendo-se o desbaste para 5 plantas/vaso dez dias após a germinação das sementes. O experimento foi conduzido por 48 dias após a germinação.

Desde a semeadura, a umidade do solo dos vasos foi mantida a 70% da capacidade máxima de retenção de água por meio de pesagem dos vasos.

O nitrogênio, em forma de nitrato de amônio, foi aplicado no solo, na forma de solução, nas doses indicadas na **tabela 1**. A aplicação foi parcelada em seis etapas aos 5, 10, 15, 20, 25 e 30 dias após a germinação

Após 48 dias da germinação, cortou-se a parte aérea do milho rente à superfície da terra dos vasos e o material recolhido foi colocado em saco de

papel. As plantas foram lavadas com água deionizada e secas em estufa de circulação forçada de ar a 65°C. Ao atingirem massa constante, obteve-se o valor de massa de matéria seca produzida da parte aérea da planta. Essas amostras foram moídas em moinho tipo Willey e submetidas à digestão com HNO₃/H₂O₂ em forno de micro-ondas (Abreu, 1997). A análise de N total foi feita no Laboratório de Fertilidade do Solo do Instituto Agronômico seguindo o método de Kjeldahl (Cantarella & Trivelin, 2001).

Foram coletados solo de cada tratamento para análise de fertilidade no Laboratório de Fertilidade do Solo do Instituto Agronômico de acordo com a rotina analítica descrita em Raij et al. (2001).

Os resultados obtidos foram avaliados estatisticamente por meio da análise de variância e complementada pelo teste de comparação de médias Tukey ao nível de 5% de probabilidade, usando o software XLSTAT, 2012.

RESULTADOS E DISCUSSÃO

O solo utilizado no experimento foi coletado entre a camada de 0 a 20 cm de profundidade na Unidade Pálida do Centro Experimental do IAC. A análise química do solo foi realizada de acordo com os métodos descritos por Raij *et al.* (2001), apresentando os seguintes valores: P resina = 5 mg dm⁻³; K = 2,5 mmol_c dm⁻³; Ca = 17 mmol_c dm⁻³; Mg = 6 mmol_c dm⁻³; CTC = 49,8 mmol_c dm⁻³; SB = 24,8 mmol_c dm⁻³; H+AI = 25 mmol_c dm⁻³ e V% = 50%.

A composição química do LETA utilizado neste trabalho pode ser observada na **tabela 2**.

Como os dados obtidos para cada tratamento separados conforme a tabela 1 não apresentaram diferenças significativas paro solo, optou-se unir os tratamentos conforme a dose de lodo aplicada. Sendo assim, para avaliação da eficiência agronômica do LETA, os tratamentos foram separados em i) mineral (MIN) sendo a média dos tratamentos que receberam apenas adição de N mineral (L0M0, L0M1, L0M2 e L0M3), ii) orgânico (ORG) sendo os tratamentos que receberam apenas LETA (L0M0, L1M0, L2M0 e L3M0) e iii) tratamentos organominerais com doses 1, 2 e 3 (OM1, OM2 e OM3 respectivamente) sendo que OMx se refere aos tratamentos que receberam dose fixa de LETA e crescente de mineral da seguinte forma: LxM0, LxM1, LxM2 e LxM3.

Os resultados da análise de solo para fins de fertilidade para as amostras coletadas após o cultivo do milho encontram-se na **tabela 3**.

As alterações observadas para a matéria orgânica do solo devido à presença de LETA formam discretas, mas significativas, sendo que os tratamentos que receberam maior dose de lodo

(OM3) foram estatisticamente superiores aos tratamentos que não receberam lodo (MIN), refletindo a presença da matéria orgânica do lodo.

Os valores de pH do solo aumentaram conforme o aumento na dose de lodo provavelmente devido ao efeito da mistura solo - lodo, pois o pH do lodo encontra-se próximo à neutralidade. O tratamento MIN apresentou pequena queda no valor de pH do solo, justificada pela utilização de NH₄NO₃, cuja liberação de íons amônio provoca a acidificação do solo.

Alterações observadas nos teores de fósforo merecem atenção devido à diminuição de P resina no solo conforme o aumento na dose de LETA aplicada pois, quanto mais lodo foi adicionado ao solo, maior foi a adsorção de P. O tratamento MIN apresentou valor significativamente superior aos tratamentos OM2 e OM3 (tabela 3), mostrando que o LETA tem potencial de retenção de P provavelmente devido à presença de AI e Fe.

O aumento de K do solo no tratamento orgânico ocorreu possivelmente devido à menor absorção deste elemento pelas plantas neste tratamento.

Resultados sem tendência aparente foram obtidos para cálcio, enxofre e magnésio e, portanto, para a soma das bases (SB), ressaltando que quanto maior a SB, maior a fertilidade do solo.

O alumínio trocável apresentou comportamento diferente do esperado, já que houve decréscimo nos teores de Al conforme o aumento da dose de LETA adicionada ao solo. Nota-se que o Al do LETA parece não estar disponível, não tendo efeito potencial de fitotoxidez. O tratamento com maior valor de Al no solo foi o mineral, mostrando provável interferência do pH do solo, que atua diretamente na disponibilidade de Al. Esse comportamento também afetou do mesmo modo a acidez potencial (H+AI), justificado pela sua dependência direta com a concentração de Al. A C.T.C. do solo, que é a soma de S.B. e H+Al diminuiu conforme a diminuição de Al e, portanto H+Al sendo assim, diretamente influenciada pelo pH do solo.

Neste ensaio, a saturação por bases aumentou conforme o acréscimo de LETA que aumentou o pH do solo, diminuindo de Al, H+Al e, portanto, a C.T.C do solo.

A CE do solo, mesmo em tratamento que recebeu a maior dose de lodo (OM3) não foi superior a 3 ds m⁻¹, mostrando que o LETA não ocasionou problemas de salinidade no solo.

Os teores de cobre tiveram comportamento alternado conforme o tratamento, provavelmente devido às suas interações com a MO, formando complexos estáveis, e a presença de íons metálicos como Fe, Mn e Al, que diminuem a sua disponibilidade.

O ferro, apesar da grande concentração no lodo de ETA, não apresentou tendência aparente, sugerindo que o Fe do lodo, assim como o Al, não está disponível.

Os teores de chumbo, manganês, zinco diminuíram com a presença de LETA se comparamos o tratamento MIN com o OM3, provavelmente devido ao pH, pois aumento no pH do solo diminui a disponibilidade desses elementos.

Outros elementos como boro e níquel apresentaram valores sem alteração para os tratamentos, não havendo influência do LETA em relação à concentração dos mesmos no solo.

CONCLUSÕES

O LETA não mostrou potencial agronômico para uso como fertilizante, não provocando mudanças significativas na fertilidade do solo.

REFERÊNCIAS

ABREU, C. A.; ABREU, M. F.; ANDRADE, J.C. Determinação de cobre, ferro, manganês, zinco, cádmio, cromo, níquel e chumbo em solos usando solução de DTPA em pH 7,3. In: RAIJ, B. van; ANDRADE, J. C.; CANTARELLA, H.; QUAGGIO, J. A. (eds) Análise química para avaliação da fertilidade de solos tropicais. Campinas: Instituto Agronômico, 2001. p.240-250.

ABREU, M.F. Extração e determinação simultânea por emissão em plasma de nutrientes e elementos tóxicos em amostras de interesse agronômico. Campinas, Tese de doutorado, UNICAMP, 135p. 1997.

BARROSO, M. M.; CORDEIRO, J. S. Problemática dos metais nos resíduos gerados em estações de tratamento de Água. In: BASTOS, R.K.X., Ensaio de tratabilidade de resíduos de estação de tratamento de água - Um passo indispensável para o equacionamento de um problema na ordem do dia. Universidade Federal de Viçosa, Viçosa.

CANTARELLA, H.; RAIJ, B. van; COSCIONE, A. R.; ANDRADE, J. C. Determinação de alumínio, cálcio e magnésio trocáveis em extrato de cloreto de potássio. In RAIJ, B. van; ANDRADE, J. C.; CANTARELLA, H.; QUAGGIO, J. A. (eds) Análise química para avaliação da fertilidade de solos tropicais. Campinas: Instituto Agronômico, 2001. p.213-224.

CANTARELLA, H.; TRIVELIN, P.C.O. Determinação de nitrogênio inorgânico em solo pelo método da destilação a vapor. In: RAIJ, B. van; ANDRADE, J.C. de; CANTARELLA, H.; QUAGGIO, J.A. (Eds) Análise química para avaliação da fertilidade de solos tropicais. Campinas: Instituto Agronômico, 2001. p.270-276.

CANTARELLA, H.; TRIVELIN, P.C.O. Determinação de nitrogênio total em solo. In:RAIJ, B. van; ANDRADE, J.C. de; CANTARELLA, H.; QUAGGIO, J.A. (Eds) Análise química para avaliação da fertilidade de solos tropicais. Campinas: Instituto Agronômico, 2001. p.262-269.

RAIJ, B. V.; QUAGGIO, J. A. Determinação de fósforo, cálcio, magnésio e potássio extraídos com resina trocadora de íons. In: RAIJ, B. van; ANDRADE, J. C.; CANTARELLA, H.; QUAGGIO, J. A. (eds) Análise química para avaliação da fertilidade de solos tropicais. Campinas: Instituto Agronômico, 2001. p.189-199.

SABAGG, M. G., MORITA, D. M. Incorporação de lodo de estações de tratamento de água em blocos cerâmicos. Departamento de Engenharia Hidráulica e Sanitária da EPUSP – Escola Politécnica da Universidade de São Paulo, 2004.

Tabela 2. Composição química do lodo de estação de tratamento de água.

Parâmetro	Unidade (1)	Valor	Parâmetro	Unidade (1)	Valor
pH (em água 1:10)		7,1	Alumínio	g/kg	51,7
Umidade, a 60 - 65°C	% (m/m)	26,5	Boro	mg/kg	64,3
Sólido Totais	% (m/m)	73,5	Cádmio	mg/kg	0,5
Sólidos Voláteis	% (m/m)	42	Cálcio	g/kg	1,1
Carbono Orgânico	g/kg	249	Chumbo	mg/kg	5,8
Nitrogênio Kjeldahl	g/kg	7	Cobre	mg/kg	23
Nitrogênio amoniacal	mg/kg	75	Cromo total	mg/kg	16,8
Nitrogênio nitrato-nitrito	mg/kg	25,7	Enxofre	g/kg	1,5
Arsênio	mg/kg	6,3	Ferro	g/kg	38,6
Bário	mg/kg	<1,0 (2)	Fósforo	g/kg	0,7
Mercúrio	mg/kg	<1,0 ⁽²⁾	Magnésio	g/kg	0,3
Potássio	mg/kg	638	Manganês	g/kg	0,9
Selênio	mg/kg	<1,0 ⁽²⁾	Molibdênio	mg/kg	<0,9 (2)
Sódio	mg/kg	442	Níquel	mg/kg	<2,4 (2)
			Zinco	mg/kg	19,7

⁽¹⁾ Resultados expressos na amostra em base seca.

Tabela 3. Atributos de fertilidade do solo para os tratamentos mineral, orgânico e organomineral.

Tratamento	M.O.	рН	Р	K	Ca	Mg	Al	H+AI	S.B.	C.T.C.
-	g/dm³		mg/dm ³ mmolc/dm ³							
MIN	24,25 c	4,7 c	55,32 a	0,89 b	38,88 ab	6,69 a	1,25 a	47,00 a	46,54 a	93,65 ab
OM1	24,69 abc	4,8 bc	50,19 ab	0,90 b	41,62 a	6,62 a	0,81 ab	45,62 ab	49,16 a	94,96 a
OM2	25,12 ab	4,9 ab	45,00 bc	0,94 b	39,62 ab	6,62 a	0,75 bc	45,31 ab	47,11 a	92,52 ab
OM3	25,31 a	5,0 a	41,62 c	1,11 b	40,44 ab	6,38 a	0,44 bc	42,94 ab	47,94 a	90,98 ab
ORG	24,44 bc	5,0 a	51,06 ab	2,16 a	37,69 b	6,19 a	0,31 c	41,62 b	46,12 a	87,88 b
Tratamento	٧%	S	В	Cu	Fe	Mn	Zn	Ni	Pb	C.E.
	%		mg/dm³					dS/m		
MIN	49,56 a	289,31 ab	0,41 a	1,58 a	28,44 ab	9,38 a	1,93 a	0,04 a	1,01 a	0,094 ab
OM1	51,88 a	324,81 a	0,43 a	1,47 b	29,19 ab	8,22 ab	1,48 b	0,04 a	0,83 b	0,099 a
OM2	50,94 a	308,38 a	0,42 a	1,39 bc	27,69 b	7,64 ab	1,24 c	0,03 a	0,74 c	0,088 ab
OM3	52,75 a	327,33 a	0,42 a	1,32 c	28,62 ab	7,57 ab	1,14 c	0,03 a	0,66 c	0,091 ab
ORG	52,69 a	243,50 b	0,42 a	1,46 b	31,88 a	6,51 b	1,49 b	0,02 a	0,82 b	0,08 b

Letras iguais não diferem estatisticamente pelo teste Tukey a 5%.

MIN: Média dos tratamentos L0M0, L0M1, L0M2, L0M3.

OM1: Média dos tratamentos L1M0, L1M1, L0M2, L0M3.

OM2: Média dos tratamentos L2M0, L2M1, L2M2, L2M3.

OM3: Média dos tratamentos L3M0, L3M1, L3M2, L3M3.

ORG: Média dos tratamentos L0M0, L1M0, L2M0, L3M3.

⁽²⁾ Não detectado, concentrações menores que o limite de detecção.