Anais do XXXV Congresso Brasileiro de Ciência do Solo
PREDICAO DE ATRIBUTOS FÍSICOS DO SOLO POR ÁRVORE DE DECISÃO E REDES NEURAIS ARTIFICIAIS
CESAR DA SILVA CHAGAS(1); WALDIR DE CARVALHO JUNIOR(1); NILSON RENDEIRO PEREIRA(1); SILVIO BARGE BHERING(1); 1 - EMBRAPA SOLOS;
A textura é uma propriedade física do solo importante e altamente variável que influencia grandemente muitas outras propriedades de grande importância para a produção agrícola como a fertilidade e a capacidade de retenção de umidade. O objetivo desse estudo foi avaliar a eficiência de dados do sensor TM do Landsat 5 no mapeamento digital de solos no semiárido brasileiro por meio da utilização de árvores de regressão (AR) e redes neurais artificiais (RNA), ambas implementadas no software livre R. Foram utilizadas na predição da areia, silte e argila, 399 amostras da camada superficial (0 - 20 cm) dos solos e como covariáveis as bandas 1, 2, 3, 4, 5 e 7, o índice NDVI e as relações entre as bandas 3 e 2, bandas 3 e 7 e bandas 5 e 7. Os resultados das análises realizadas, usando um conjunto de validação independente, mostraram que as melhores estimativas dos atributos foram obtidas com a utilização dos modelos RNA, que explicou 57% da variabilidade espacial da areia, 49% da argila e 32% do silte. A RNA mostrou-se mais vantajosa, em comparação com a AR, pelo fato de não ser sensível ao sobreajustamento (overfitting) e nem a presença de ruídos nos dados. Além disso, a RNA produziu mapas da distribuição dos atributos mais realísticos do que a AR.