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Table 1. Estimated mass of carbon in the world’s soils.
Source: USDA.

Soil orders Organic C
10° km? ok
Alfisols 13,159 90.8
Andisols 975 29.8
Aridisols 15,464 54.1
Entisols 23,432 232.0
Gelisols 11,869 237.5
Histosols 1,526 312.1
Inceptisols 19,854 323.6
Mollisols 9,161 120.0
Oxisols 9,811 99.1
Spodosols ; 4,596 67.1
Ultisols 10,550 98.1
Vertisols 3,160 18.3
Other soils 7,110 171

TOTALS 130,667 1,699.6
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Organic Matter — Mineral Interaction Mechanisms

What are the major mechanisms for organic matter-
mineral complexation?
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Overall Hypothesis: Organo-mineral complexation, a key process for stabilizing carbon,
is limited by the supply of the mineral surfaces and the mixing of minerals with organic
matter in natural ecosystems
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Research Objectives

» Investigate soil organic matter molecular compositi on
under varying landscape topographic positions

> Assess the interactions of C and C forms with soil minerals
at the molecular scale

» Characterize Fe speciation along the redox gradient s
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C and Fe speciation varies along landscape topographic gradients.

Compared to oxic upland soils, Fe oxides become less important in controlling C
sequestration at suboxic-anoxic depositional positions and in wetlands.



Field Sampling

» Pasture, forest, and agricultural hillslopes
» Summit, backslope, and footslope
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Advanced Characterization Techniques

Near-edge X-ray Absorption Fine Structure (NEXAFS)
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« Characterize C and N functional groups of soil organic matter without any
pretreatment.
e Spot Size: 1000100 MICRONS



Advanced Characterization Technigues

Scanning Transmission X-ray Microscopy (STXM) —-NEXA FS

Fresnal Ec'ann:&d
zone plate SEHTPE

Saft X-ravs

Order sorting
aperture

SM beamline, CLS

Acquire sequence of images over NEXAFS
spectral region at 30-40nm resolution

Map distribution of C and C forms and the
major elements (K, Ca, Fe, Al, Si) in soils at
nanometer scale.

Assess the interactive mechanisms of C with
specific soil minerals.




Advanced Characterization Techniques

lron Speciation
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STXM-NEXAFS Analysis of Pasture Soill
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Pasture Soll Carbon Speciation by NEXAFS
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Color-coded Composite Maps of C, Ca, Fe, Al and Si

from Pasture Soll Clay Fractions

Fe Al Si C Ca Fe C Al Si

Fe is intimately associated with Al and Si .

Discrete quartz particles.

C is closely associated with clay particles, as particulate @rgani
matter has been excluded from the clay fractions.

The discrete SiQparticles contain little or no C



Correlation between C and Ca, Fe, Al, & Si
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Distribution of C Functional Groups
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The majority of OM forms associated with soil organo-
mineral assemblage are aromatic C=C, carboxylic-C and
polysaccharides



Ca Distribution and Speciation

Cain
summit soill

Cain
footslope soil

Sorbed Ca
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CaCoO

346 348 350 352 354 356 358
Energy (eV)

Ca forms: organically complexed Ca and/or Ca phosphate
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Fe Distribution and Speciation

Fe in
summit soil

Fein
footslope soil
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Fe3* present in soils. No Fe?*
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Fe EXAFS

Fe(lll)-aluminosilicates Fe(lll) oxides
Vermiculite llite 2-line ferrihydrite Goethite Hematite
(%) (%) (%) (%) (%)
Summit 35 15 9 18 23
Footslope 32 12 16 24 16

About 50% of total Fe is in Fe(lll) oxides.
Fe(lll) oxides are mainly crystalline goethite and hematite.

17



Si Distribution and Speciation
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Quartz particles present in clay fractions

Clay aluminosilicates in the soils are hydroxy-interlayered vermiculite, illite

and kaolinite by XRD
18



Solid-phase Iron Speciation Under Varying Redox

Environments

21



Research Conceptual Model

Role of Fe- and Mn- redox transformations on carbgrecand sequestration in a

mixed land use watershed, including floodplain $orepland forest and agriculture
No-Till
Agriculture

Zone of dynamic groundwater/stream
water fluctuations, microbiological

activity and cycling of Fe, Mn, N, and C
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Sensor Installation and Sampling Locations

Western Floodplain
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Continuous In-situ Monitoring of redox in Western

Flooplain
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Floodplain Soil Fe Oxide Content and Mineral

Surface Area

Fe from dithionite-citrate extraction (%)

Mineral Surface Area (m *g™)
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Less Fe oxides from DCB extractions and lower minetaurface area in
buried wetland.



Floodplain Soil Clay Mineralogy by XRD
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Chlorite in pre-colonial wetland



Intensity (counts/channel; arb units)
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Solid-phase Iron Speciation by
Mdssbauer Spectoscopy for Floodplain

el

Fe(lll) in clays is significantly reduced in
the wetland compared to legacy sediments
and gravel

Fe(lll) (oxyhydr)oxides were absent in the
wetland .

These findings highlight that in addition to
reductive dissolution of Fe(lll)-
(oxyhydr)oxides, the anoxic redox
conditions of the floodplain soils lead to
clay structural Fe reductive cycling in the

natural field



Floodplain Soil Fe Speciation by EXAFS
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Stabilization of Organic Matter by Adsorption and

Coprecipitation with Ferrihydrite: A Laboratory
Study




Ferrihydrite: Amorphous Fe Oxides

Cismasu et al, 2012

» Ubiquitous occurrence
In the environment

» Small particle size

» High surface area: ~300
m?/g

» Highly reactive with

organic matter in soils
and sediments

» Forms in the presence
of organic matter



Research Objectives

» Investigate the extent of organic matter adsorption and coprecipitation
with ferrinydrite

» Compare the stability of the adsorbed and coprecipitated organic matter

» Compare the mechanisms of organic matter-ferrihydrite complex
formation by adsorption and coprecipitation

» Examine the spatial distribution of organic matter on ferrihydrite at the
nanometer-scale
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Experimental Setup

Adsorption:

Dissolved Organic Matter (DOM): from forest litter layer

Mixing DOM solution with freshly synthesized ferrihydrite (pH 4 and 7)
Coprecipitation:

Dissolve Fe3*in DOM solution and then raise pH to 7
Desorption:

0.1 M NaH,PO,, 0.1 M NaOH, and 0.1 M Na,P,O-,

Advanced Characterization:
FTIR

Near-edge X-ray Absorption Fine Structure (NEXAFS) Spectroscopy
Scanning Transmission X-ray Microscopy(STXM)

Fe K-edge Extended X-ray Absorption Fine Structure (EXAFS) Spectroscopy
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Adsorption and Coprecipitation of DOM as a

o
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OC loadings refer to the normalized C content to the initial surface area of ferrihydrite.
Sorbed C decreases with increasing pH.

Coprecipitation leads to a greater maximum OC retention capacity than adsorption.



Changes In Specific Surface Area (SSA) for OM-

Ferrihydrite Complexes
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Micropore (< 2 nm) Volume
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Sorption of OM at the openings of micropores clogged and
rendered them inaccessible
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Mesopore (2-50 nm) Volume

0.05 %
"o 004 7o ® Adsorption, pH4
o O Adsorption, pH7
2 v  Coprecipitation, pH7
GEJ 0.03 -
)
S #
>
o 0.02 -
= 2
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0.00 YYV ¥Y v ¥ * ¥
0 1 2 3

C adsorbed and coprecipitated (mg C i)

Organic matter can enter into mesopores, thus becoming stabilized.

Coprecipitation results in greater decrease in mesopore volume than adsorption,
suggesting more C is stabilized in mesopores during coprecipitation.
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Desorption of Adsorbed and Coprecipitated C on Ferri
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Desorption efficiency: 0.1M Na,P,0, > 0.1M
NaOH > 0.1M NaH,PO,

C is more stabilized at lower loadings

Coprecipitation leads to stronger C
stabilization than adsorption



FTIR Spectra of the Adsorbed C

Asymmetric
COOH

£§ Symmetric 5
© COOH §

1389

1.30 mg C m?2

Absorbance (a.u)

0.52mg C m?

1800 1600 1400 1200 1000
Wavenumber (cnmit)

Strong complexes of
carboxylic groups with
ferrinydrite are formed
perhaps via a ligand exchange
mechanism
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Absorbance (a.u)

FTIR Spectra of the Coprecipitated C

Asymmetric

1381

1377

As with adsorption, strong
complexes of carboxylic C
groups are formed

- 3.13 mg C m2 perhaps via a ligand
exchange mechanism.

1.58 mg C m?

0.98 mg C m?2

0.51 mg C m?2
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NEXAFS Spectra of the Adsorbed C

COOH
DOM

C=C-OH
C=C
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Ligand exchange between carboxylic C and ferrihydrite could be a major mechanism
for OM-ferrihydrite interactions.

Aromatic C is selectively takeup by adsorption at lower C loadings.
40



Normalized Intensity (arbitrary units)

NEXAFS Spectra of the Coprecipitated C

OM-Fe(lll)
Complexes

\/ \éngmz
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OM-Fe(lll) complexes are
formed at higher C loadings for
coprecipitation.
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Fe EXAFS Spectra of the Coprecipitates Formed In
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Organic Fe(lll) complexes
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C Distribution on Ferrihydrite via Coprecipitation
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Conclusions

» Coprecipitation results in greater C retention and stability
than adsorption.

» Organic matter is more stabilized by mineral surfaces
and small mineral pores at lower loadings.

» Ligand exchange between carboxylic C and ferrinydrite
could be a major mechanism for OM-ferrihydrite
Interactions for both adsorption and coprecipitation.

» Organic matter-Fe(lll) complexes are formed via
coprecipitation
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Soill Organic Compounds
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What C functional groups are involved with C-mineral
Interactions?

How are the C functional groups spatially distributed on mineral
surfaces?



Changes in Micropore (<2 nm) Volumn for OM-

Ferrihydrite Complexes
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FTIR Spectra of the Adsorbed C

In the process of adsorption, strong
Inner-sphere complexes of
carboxylic C groups with
ferrinydrite are formed via ligand
exchange mechanism.
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FTIR Spectra of the Coprecipitated C
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As adsorption, strong inner-
sphere complexes of
carboxylic C groups with
ferrinydrite are also formed
via ligand exchange
mechanism for
coprecipitation .

Stronger bonding of Fe-
carboxyl C complexes for
coprecipitation than for
adsorption.



NEXAFS Spectra of the Adsorbed C
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Ligand exchange between
carboxyl C and ferrihydrite is likely
the major mechanism for organo-
ferrinydrite interactions.



NEXAFS Spectra of the Adsorbed C
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Distribution of C forms on Ferrinydrite via Adsorption by STX M
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