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¢ Modeling
-> Scientific Modeling
-> Mathematical Modeling
-> Numerical Modeling
-> Modeling of Vadose Zone Processes

¢ HYDRUS Family of Models and Modules:

- HP1/HP2 - general biogeochemical module
- UnsatChem - transport of major ions

- Wetland - C and N processes

- DualPerm - preferential flow and transport

- Fumigants - transport of fumigants

- C-Ride - colloid-facilitated solute transport




The process of creating abstract or conceptual mote
4 Sculpting - to create a form from a substance such as clay

¢ Fashion Modeling- to display objects (clothing) for others to see
¢ Molecular Modeling - to mimic the behavior of molecules
\ 4
\ 4
\ 4

Modeling Psyc *10Iogy- a type of behavior learned through
observation of others demonstrating the same behavi

Physical Models to make a miniature model of an technical artifact

Scientific I\/Iodeling - the process of creating abstract or conceptual
‘models and their use in the creation of predicitatéements.
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Scientific Modeling Is the process of generating various
abstract, physical, graphical, conceptual and/or
mathematical models.

A Scientific Modelis asimplified abstract view of a
complex reality, in which empirical objects, phenomna,
and physical processes are represented in a logicahy
by graphical objects, abstract ideas, or mathematal
equations.

A Graphical Model is a probabillistic

model, in which a graph denotes the \ /@
conditional dependence structure é/
between random variables.

An example of a graphical model




Mostly used before the development and wide use of numerical
hydrological models.

: i ‘Polnt Source =

Coarse Wedge-

Example of a Physical Groundwater Model

Photo Credit: West Virginia Conservation Agency
Dry bed view of Type 1 physical model

looking from lakeside to riverside.




Conceptual Model

Conceptual Model- formed after a conceptualization process
In the mind.

Conceptual Model- used to help us know and understand the
subject matter they represent.

Conceptual Modelingis the activity of formally describing
some aspects of the physical and social world around us for the
purposes of understanding and communication.
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A Mathematical Model Is a description of a physical
system using mathematical concepts and language.

Flow and transport processes in the vadose zone are usually
described using variougartial differential equations.

Water flow, and solute and heat
transport in the plant-soil-atmosphere

system (HYDRUS-1D)

Variably-Saturated Water Flow (Richards Equation)
00(h 0 oh
(h) =—| K(h)|—-1]||-S(h)
ot oz oz
Solute Transport (Convection-Dispersion Equation)
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Colloid-Facilitated Solute Transport

(C-Ride Module)

Mass Balance of Total Contaminant:
o0C a8, os, 06.,.CS, os_s,
ot ot ot ot ot
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ox < ox ox

Left-hand side sums the Mass of Contaminant:
- in theliquid phase
- sorbed instantaneously and kinetically to the solid phase
- sorbed to mobile and immobile colloids

Right-hand side considers various Mass Fluxes
- dispersiveand advective transport of the dissolved contaminant

- dispersiveand advective transport of contaminant sorbed to

mobile colloids
and Transformation/Reaction (e.g.,degradation).
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Analytical Models represent a classical mathematical approach
to solve mathematical equations, leading to an exact solution
for a particular problem.

Analytical Models usually result in an explicit equation that
states that concentration (or water content or temperature) Is
equal to a certain value at a particular time and location.

CoB(x,1)+C A1) +L[1- A(x.t)-B (x 1) o<tst, —0.8
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c(x,t)= c
CO[B(x,t)—B(x,t—to)]+CiA(x,t)+f[(1—A(x,t)—B(x,t )] t>t 2 06
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\ V—U)X —ut \ V+U)X +ut . . . .
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u+v 2b 2JDRt | u-v 2b 2VDRt breakthrough curves for boron transport
v2 vt Rx+\t through a 30 cm long soil column filled
" 2uD eXp[B‘Ejer C{zﬁ} with Glendale clay loam (van Genuchten,

1974).
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Computer Software for Evaluating Solute Transport in
Porous Media UsingAnalytical Solutions of the Convection-
Dispersion Equation

J. Simiinek, M. Th. van Genuchten, M. Sejna, N. Toride, and F. 1L eij

Hotgarta Vaiale [0zo | A powerful and very versatile Windows-
erical Variable: [ Flus cmcenna:minEqumbﬁum Phase jﬂ based software packag e.
gTwu-regiun model, effect of the mass transfer coefficient, i One—DimenSionaITranSport MOde|S:
10T CFITM 'van Genuchten1980]
=" CFITIM  [van Genuchten1981]
2089 CHAIN  [van Genuchten1985]
S0 CXTFIT2 [Toride et al.,1995]
I S SCREEN [Jury et al, 1987]
R Two/Three-DimensionalTransport Models:
et 3DADE [Leij and Bradford,1994]
pese | | e | N3DADE [Leij and Toride,1995]




STANMOD (1D Applications)
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STANMOD (1D Applications)

Direct Analysis
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STANMOD (2D Applications)
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Using Analytical Solutions one can often more easily evaluate
Interrelationships among parameters and get bettemnsight into
how various processes control the basic flow andansport
processes.

Analytical Solutions are often used to check the correctness and
accuracy of numerical models.

Many Analytical Solutions lead to relatively complicated
formulations that include infinite series and/or irntegrals.

Analytical Solutions can usually be derived only forsimplified
transport systemsnvolving linearized governing equations,
homogeneous soils, simplified geometries of the traport
domain, and constant or highly simplified initial and boundary
conditions.

For more complex situations such as for transient water flow or
nonequilibrium solute transport with nonlinear reactions,
Analytical Solutions are generally not available and/or cannot be
derived, in which caseNumerical Models must be employed.




Time and space is divided into small pieces (e.g., finite
differences,finite elements finite volumes) and the
governing equations are integrated over these pieces.




¢ Numerical Methodsare superior to Analytical Methods In
terms of being able to solve practical problems.

¢ Numerical Methodsallow users
- to design complicated geometries that reflect complex natural
geologic and hydrologic conditions,
- to control parameters in space and time,
- to prescribe realistic initial and boundary conditions, and
- to Implement nonlinear constitutive relationships.

¢ Numerical Methodsusually
- subdivide the time and spatial coordinates into smaller piese
such as finite differences, finite elements, or finite volaes, and
- reformulate the continuous form of governing partial
differential equations in terms of a system of algebraic eqgs.

¢ In order to obtain solutions at certain times,Numerical
Methods generally require intermediate simulations (time-
stepping) between the initial condition and the points in me
for which the solution is needed.




HYDRUS (1D/2D/3D)

Software for Simulating Water Flow and
Solute Transport in One/Two/Three-
Dimensional Variably-Saturated Soils

Using Numerical Solutions

- thousands of users around the world
- thousands of applications published o |
- used by scientists, students, and/or practicing professionals
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Industrial Pollution
Municipal Pollution
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Ecological Apps

Heat Exchange and
Fluxes (including the
Surface Energy Balancég

Carbon Storage and
Fluxes

Nutrient Transport
Soil Respiration

Microbiological
Processes

Effects of Climate
Change

Riparian Systems

Stream-Aquifer
Interactions

Hillel (2003)

e

movement

Leaching +
groundwater
recharge




Variably-Saturated Water Flow (Richards Equation)

6(h) _ 0 oh ]
R |

Solute Transport (Convection-Dispersion Equatior)

6(ps)+a(6’c)=i(9 acj _dqc
ot ot 07 0z) 0z

Heat Movement (Conductlon Dlspersmn Equation

0C (AT
( ) _9 }I(H)— —Cwaq—T—CWST
ot 9z 0Z
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Water Flow:
¢ Richards equation for variably-saturated water flow
¢ Various models of soil hydraulic properties
¢ Hysteresis
¢ Sink term, accounting for water uptake by plant rods
(uncompensated and compensated; reduced due tdiosmd pressure stress)
¢ Preferential flow
¢ Isothermal and thermal liquid and vapor flow
Solute Transport:
¢ Convective-dispersive transport in the liquid phase
¢ Diffusion in the gaseous phase
¢ Linear and nonlinear interactions between the solicand liquid phases
¢ Linear equilibrium reactions between the liquid andgaseous phases
¢ Zero-order production, First-order degradation
¢ Physical and chemical nonequilibrium solute transpd
¢ Sink term, accounting for nutrient uptake by plantroots (active and passiye
Heat Transport:
¢ Conduction and convection with flowing water (trangort of latent heat)

Inverse Optimization (of flow, transport, and reaction parameters)




¢ Transport of Single lonsor Particles (colloids, viruses, bacteria)
¢ Transport of Multiple lons (sequential first-order decay)

¢ Radionuclides: 238pY ->234 -> 230Th ->226Rg
¢ Nitrogen: (NH,),CO -> NH,* -> NO,” -> NO;
¢ Pesticides: aldicarb (oxime) -> sulfone (sulfone oxime) ->

sulfoxide (sulfoxide oxime)
¢ Chlorinated Hydrocarbons: PCE -> TCE -> ¢c-DCE -> VC -> ethylene

¢ Pharmaceuticals, HormonesEstrogen (17bEstradiol -> Estrone -> Estriol),
Testosterone

¢ EXxplosives: TNT (-> 4HADNT -> 4ADNT -> TAT), RDX, HMX

¢ Transport of Major lons (the UNSATCHEM module)

¢ General BioGeoChemicalReactions (theHP1/2/3module)
¢ Processes in Wetlands (thew2D and CWM1 modules)
¢ Colloid-Facilitated Solute Transport (the C-Ride module)
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Applicatic

Subsurface Drip

Irrigation System
Soil water content
simulated as:

A. a Three-Dimensional
system withmultiple
point sources

B. aTwo-Dimensional
system witha line
source

C. An Axisymmetrical
two-dimensional
system witha point
source

Kandelous, M. M., J. Sitmek, M. Th. van Genuchten, and K. Malek, Soil watantent distributions between two
emitters of a subsurface drip irrigation syst&oi| Science Society of America Journal, 75(2), 488-497, 2011.




HYDRUS (2D/3D) - Applications

i |
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Finite Element Mesh and Material Distribution

A two-dimensional transect, 411 m wide and 61 m deep, withfeeeway in the middle
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£ Solid - Block
@ Solid - Boundary Surfaces
(& Solid - Extruded

k= Dimension

2 Comment

Transform Object *
q‘D Translate...

T3 Rotate...

Ak Miror...

+8+ Stretch...

Q Skew...




Import of complex Geometries (e.gDXF, TIN, STL)
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¢ ParSWMS (Hardelauf et al., 200#)Parallelized version of
SWMS 3D, an earlier and simpler versionta¥ DRUS-3D.

¢ Developed by theForschungszentrum in Julich, Germany
¢ MPI (Message-Passing Interface L INUX or UNIX OSs.

¢ Test - Supercomputer with 41 SMP nodes with 32
processors each (total 1312 processors)

2D Water flow and solute transport (Hardelauf et al.,2007)
492,264 finite element nodes

3D Water flow problem
275,706 finite element nodes
(Herbst et al., 2008)




¢ HYDRUS + PHREEQC = HP1/2/3
¢ HYDRUS + C-Ride

¢ HYDRUS + DualPerm

¢ HYDRUS + UNSATCHEM

¢ HYDRUS + Wetland (CW2D/CWM1)

¢ HYDRUS + Fumigant




HYDRUS and its Modules

¢ HYDRUS + PHREEQC = HP1/2/3




Simulating water flow, transport and bio- |

geochemical reactions in environmental

soil quality problems A Coupled Numerical Code for

Variably Saturated Water Flow,
Solute Transport and
BioGeoChemistry
In Soil Systems
0]

HP1/2/3

Flow and transport modé|
HYDRUS-1D 4.0  [Cump
HYDRUS (2D/3D) 2.x

Biogeochemical model
PHREEQC-2.4




HYDRUS-1D or HYDRUS (2D/3D):

4
4
4
4
4

PHREEQC [Parkhurst and Appelo, 1999}

L K R R 2

L R R 2

Variably-Saturated Water Flow
Solute Transport

Heat Transport

Gas Transport

Root Water Uptake

Available Chemical Reactions:
Aqueous Complexation

Redox Reactions

lon Exchange (Gains-Thomas)
Surface Complexation (diffuse double-layer model ashnon-
electrostatic surface complexation model)
Precipitation/Dissolution

Chemical Kinetics

Biological Reactions




Total_H
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Charge
Ca

Mg
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K

Fe(2)
Fe(3)
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Sr

Si
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c()
Allealinity
5(6)
Mi5)
Mi3)
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p

F

Li

Br

Zn

Cd

Ph
Cul@)
Cufl)

Components

0O = N & Wk

il
|
i
[
|

Component
Total H

. ' N
Colloids

Frezets

Path to Folder withll hetmodynamic Databases

C:hwusshHYDRUS3D 2.0AThermodyrnamicDBAPHREEQC DAT

File PHREEQC.IM

The PHREEQC.IN file specilying the chemical

composiiion and chemical reachions can be created
using either the HYDRUS GUI [see the Editor in the
next dialog window) or the FPHREEQC GUIL

7| Create PHREEGCIN file using HYDRUS GUI

The PHREEGC. Iri file will be created when the check

box above is checked,

Boundary Conditions
I Concentration

@ In Solution Compositions

: Browse

2

Mest.. |
e e

R

Jacques, D., and J. Siiinek, Notes on the HP1 software — a coupled code feariably-saturated water
flow, heat transport, solute transport and biogeocbmistry in porous media, HP1 Version 2.2,
SCKeCEN-BLG-1068Waste and Disposal, SCKeCEN, Mol, Belgium, 114 pp2010.
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Solution 1501 Imitial condition r
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Ca 0.1
- Solution Ha 5.0
- -dengity €l 4.8
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i Solution 3001 Boundary solution
- temperature = g
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B Chemical/phyzizal [re]action
G- Database
- Advanced : ‘-éx
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| Mewt .
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Four text editors to define the geochemical modeilequired output, and
solution compositions are fully incorporated into he GUI.




Major ions (Ca, Na, Al, Cl) andHeavy Metals (Zn, Pb, Cd)

0.01

0.008

0.006 === |

0.004

0.002

8E-004 —

Cl

Concentration (mol/l)
Concentration (mol/l)

&

0o 3 6 9 12 15
Time (days)

Time (days)

A (8-cm) soil column is initially contaminated with heavy mals (in equilibrium with the
cation exchanger). The column is then flushed with a Cagdolution without heavy metals.
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pH

U-species replaced
by other cations

-
Increased deprotonatlgn
Increased U-sorption

€ Aqueous speciation reactions
C, Ca, Cl, F, H, K, Mg, N(5), Na, O(0), O(-2), P, S(6)J(6)

€ Multi-site cation exchange reactions
- Related to amount of organic matter
- Increases with increasing pH
- UO,?* adsorbs

€ Surface complexation reactions

- Specific binding to charged surfacessfFeOH)
- Related to amount of Fe-oxides

Jacques et al., VZJ, 2008.

4.2 Steady-state
4_

L 38

36— Atmospheric
) 5 cm depth
S A AL LA LA BN R
150 151 152 153 154 155 156 157 158 159 160

Time (year)
€ Water content variations induce pH variations
(dry soil => low pH)
@ pH variations => variations in sorption potential
(low pH => low sorption — higher mobility)

1x10° o] —: steady-state

« :transient
1x10° ;
1%10°

1x107

131075
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Uranium Transport from a Mill Tailing Pile

HP2 - Additions to Thermc ™ HYDRUS 2.02 - [UTailing2*, Results, Total_H]
e M Fle Edit View Insert Calculation Results Tools Options Window Help Developers -8x
log k 15.08 .
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¢ Transport of Heavy Metals(Zn?*, Pb?*, and Cc#*) subject to a
multiple pH-dependent Cation Exchange

¢ Transport and mineral dissolution of Amorphous SiO, and
Gibbsite

< Infiltration of a Hyperalkaline Solution in a clay sample
(kinetic precipitation-dissolution of kaolinite, illite, quartz, calcite,
dolomite, gypsum, hydrotalcite, and sepiolite)

¢ Kinetic biodegradation of NTA (biomass, cobalt)

¢ Long-term Uranium transport following mineral phosphorus
fertilization (pH-dependent surface complexation and cation exchae)

¢ Transport of Explosives such as TNT and RDX

¢ Property Changes(porosity/conductivity) due to
precipitation/ dissolution reactions




HYDRUS and its Modules

¢ HYDRUS + C-Ride




€ Many contaminantsshould be relatively
Immobile in the subsurface since under normal
conditions they arestrongly sorbed to soll

€ They can also sorb to colloids, which often move
at rates similar or faster as non-sorbing tracers

€ Experimental evidence exists that many
contaminants are transported not only in a
dissolved state by water, but also sorbed to
moving colloids

€ Examples:heavy metals radionuclides,
pesticidesviruses, pharmaceuticals, hormones,
and other contaminants




¢ HYDRUS-1D and HYDRUS (2D/3D)

- Variably-Saturated Water Flow
- Solute Transport

- Heat Transport

- Root Water Uptake

¢ C-Ride (Simiinek et al., 2006)

- Particle Transport
- colloids, bacteria, viruses, nanoparticles
- attachment/detachment, straining, blocking

- Particle-Facilitated Solute Transport
- transport of solutes attached to particles




Colloid, Virus, and Bacteria Transport

Alr
- -
L —
Mobile Colloids, C_
Water y
k dc
acC
- wSStr wS -
Strained Colloids, S Attached Colloids, S a

Solid




Colloid-Facilitated Solute Transport

Alr
®_0
Contaminant sorbed to
mobile colloids, S, —
Water
str Dissolved

Contaminant, C

Instantaneously Sorbed Kinetically Sorbed
Contaminant, S, Contaminant, S,
Solid

Contaminant sorbed to immobile colloids, S;,




Pang et al. [2005]: Bacteria act as carriers for revy
metals in gravel aquifers

L o
»
ALt Tr L

Since bacteria may be excluded from small
pores, they move through interconnected
larger pores and cracks where water moves
quicker.

Since contaminants can sorb to these
bacteria, they provide a vehicle for rapid
transport of less mobile contaminants.




C-Ride Module

0.7 1 — S 1.0 1
- 0.6 — = 08 |
E 0.5 — 53 E
= 04 w067
£ £
g 03 @ 0.4
2 0.2 2
o Q551
S 01 o

0.0 - : : : : 0.0 - : :

0 50 100 150 200 250 300 0 50 100 150 200 250 300

Time [min] Time [min]
Breakthrough curves for colloids (black line), solute sorbed to colloids (blue
line), and dissolved solute (red line):
Left:  solute and colloids are appliedndependently
Right: solute is initially attachedto colloids

The Retardation Factor for colloids is equaKtol and for solute@
Unit input concentrations.




HYDRUS and its Modules

HYDRUS + DualPerm




The DualPerm Module




Physical Nonequilibrium

Solute Transport Models

Simiinek and van Genuchten (2008):

a) b) c) d)
Water Water
l Water l 1 Water 1 mmo Mobilel { Slow Fastl
P>
Solute Solute | Solute
l SOIUtel Immob.] Mobile mmo Mobile Slow Fastl
<> l l <>
9 9: eim+9mo H: Him+Hmo H: HM +0F

a) Uniform Flow

b) Mobile-Immobile Water

c) Dual-Porosity (Siminek et al., 2003)

d) Dual-Permeability (Gerke and van Genuchten, 1993)




Chemical Nonequilibrium

Solute Transport Models

Siminek and van Genuchten (2008):

a) b) C) d) e)
Immob.| Mob. Slow | Fast
Ll Slk*—' T <__'Smoe Sme > Sfe
> g 0 4 Hlm gm em ef
s l l l Sm- i l
¢ Sk<——> ¢ 52k<__’ = «_»Cim Cm(:__’smok Smk Cm C:__’ka

a) One-Site Kinetic Model
b) Two-Site Model (kinetic and instantaneous sorption)
c) Two Kinetic SitesModel

(particle transport, e.g. colloids, viruses, bacteria)
d) Dual-Porosity with One Kinetic Site Model
e) Dual-permeability with Two-Site Model




Variably-Saturated Water Flow

Soil Hydraulic Model g|
Hydraulic Mode

Single Porosiy Models E

& van Genuchien - Mualam :
[ With AirEniny Value of =2 cm Cancal

(™~ Modited van Genchien

(™ BrooksCarey Previous

(" Eosugl (log-nomad)

Dual-PorosityDual-Femeabifity Models Hexd

(" Dyalporasty (Dumer, dual van Genuchian - Mualem) Help

[~ Dusalporogity (mobile-immobde, waler ¢ mass fransfer)

(" Dualponasty (mobile-immobde, head mass transter)

== Wodels below are recommendsad onby for expengnced users ==
~

(" Duakpemmesabilty (Geke and van Genuchten, 1533)
(" Lock-up Tebles

Hysterasis

W Mo hysteresis

(™ Hystaresis in retention cune

i" Hysteresis in relention curve and conductity

(" Hysteresis in ratention cuve (no purnping. Bob Lenhand)
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2 DualPe odule — AN Abplicatic

Water flow and Solute Transport in
Dual-Permeability Variably-Saturated Porous Media

=B~ Results - Graphical Display 0.000

.M Pressure Head
- M) Water Content

ow

W) Velocity

- .M Velocity Vectors
)

-13.636
27273
-40.509
-54 546
£8.182
-81.818
-35.455
-109.091
122728
-136.364
-150.000

------ M Water Mass Transfer

Dual-Pemeability Options
Display Matrix
|:| Display Fractures

Pressure head profiles for the matrix (left), isotopic fracture, and fracture
with K A/K A=10, and fracture with K /K A=0.1 (right).




HYDRUS and its Modules

HYDRUS + UNSATCHEM




Dl 2

¢ HYDRUS-1D and HYDRUS (2D/3D)

- Variably-Saturated Water Flow
- Solute Transport

- Heat Transport

- Root Water Uptake

¢ UNSATCHEM (Simiinek et al., 1996)

- Carbon Dioxide Transport and Production

- Major lon Chemistry
- Cation Exchange
- Precipitation-Dissolution (instantaneous and kinetic)
- Agueous Complexation




A N0 a
Agqueous
1 Corﬂponems 7 | ce*, Mg+, Nar, K*, SOz, CI, NO;;
CaCO,?, CaHCO,*, CaSQ,°, MgCO.?,
2 Comple_xed 10 [ MgHCO ", MgSQ,°, NaCQO;, NaHCO,?,
Species NaSO,, KSO,
. CaCO,, CaSO,2H,0, CaMg(CO,),,
3 Presmgg;aetgd 6 | MgCO.BH,0, Mg.(CO,),(OH),3H.0,
P Mg, Si,0, (OH) BH,O
4 Sorbed Species 4 XCa, XMg, XNa, XK
(exchangeable)
51CO,-H,0 Specieg 7 | Peoy H,CO5', COs%, HCOg, HY, OH, H,0
6 Silica Species | 3 H,SiO,, H.SiO,, H,SiO,*

Kinetic reactions: calcite precipitation/dissolutian, dolomite dissolution
Activity coefficients: extended Debye-Hickel equatins, Pitzer expressions




To evaluate the effectiveness of HYDRUS to predict: %
¢ Water content and fluxes 2
€ Concentration of individual cations (e.g., C&', Mg?") '§
€ Overall salinity (Electrical conductivity — EC) §
4 Sodium Adsorption Ratio (SAR) S“R\/% 8
€ Exchangeable Sodium Percentag&SP) 2 ‘
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Gongcalves, M. C., J. Sininek, T. B. Ramos, J. C. Martins, M. J. Neves, and F. P. Pires, Multicomponiesplute transport in soil
lysimeters irrigated with waters of different quality, Water Resources Researdi?, 17 pp., 2006.

Ramos, T. B., J. Sininek, M. C. Gongalves, J. C. Martins, A. Prazeres, N. L. Castanheira, and L. S. Pieg Field evaluation of a
multicomponent solute transport model in soils irrigated withsaline waters,J. of Hydrology, 407(1-4), 129-144, 2011.




Major lon Chemistry Module

Solution Compozition

Adzorption Concentrations

Ads |
:

Precipitated Concentrations

Prec |
]

=428 Results - Graphical Display
----- 00 Pressure Head

..... 000 Water Content

..... 0 Velocity

..... o Velocity Vectors
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..... 000 Alkalinity
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..... 000 Chioride

..... 000 Tracer
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..... 00) Sorbed Magnesium
..... 00 Sorbed Sodium
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----- M0 Calcite

..... 0] Mesquohonite
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| Previous ... I |

Siminek, J., and D. L. Suarez, Two-dimensional transpamodel for variably saturated porous
media with major ion chemistry, Water Resources Researcdi(4), 1115-1133, 1994,




HYDRUS and its Modules

¢ HYDRUS + Wetland (CW2D/CWM1)




Constructed Wetlands(Cws) or wetland treatment systems

¢ are systems designed tonprove water quality

¢ use the same processes that occur in natural wetlands thave the flexibility
of being constructed

+ effective in treating organic matter, nitrogen, phosphorus, anddditionally
for decreasing the concentrations of heavy metals, organic chesals, and
pathogens

CW2D : aerobic and anoxic processes for organic matter, nitrogenral
phosphorus(Langergraber and Siminek, 2005)

CWML1: aerobic, anoxic andanaerobicprocesses for organic matter,
nitrogen and sulphur (Langergraber et al., 2005)

SubsurfaceVertical (CW2D) and Horizontal (CWM1) flow constructed
wetlands:
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CW2D : aerobic and anoxic processes for organic matter, nitrogenral phosphorus
CWML1: aerobic, anoxic andanaerobicprocesses for organic matter, nitrogen and sulphur

Components:

CW2D (Langergraber and Sinminek. 2005)

C WM (Langergraber et al.. 2009h)

Organic matter. nitrogen. phosphorus

Organic matter. nitrogen, sulphur

CW21D components
1. SO: Dissolved oxygen. O
CE: Readily biodegradable soluble COD.
CS: Slowly biodegradable saluble COD.
CI: Inert soluble COD.
XH: Heterotrophic bacreria
XANs: dutotraphic ammeonia oxidizing bacteria
(Nitrosomonas spp. )
XANDb: dutotrophic nitrite oxidizing bacteria
{Nitrebacter spp.)
8. NH4N: Ammonium and ammonia nitrogen.
9.  XNOIN: Nitrite nitrogen.
10. NO3N: Niirate nifrogen.
11. N1: Elemental nitrogen.
12. PO4P: Fhosphate phosphorus

oA 1

=]

Organic nitrogen and crganic phosphors are modeled
as part of the COD.

Witrification is modeled as a two-step process.
Bacteria are assumed to be immaobile.

It iz generally assumed that all components except
bacteria are scluble.

Soluble components

1.

Mo e

g

S0: Dissolved oxygen, O

SE: Fermentable, readily bicdegradable soluble
CoD.

SA: Fermentation products as acefate.

SI: Inert soluble COD.

SNH: Ammeonium and ammonia nitrogen.

SNO: Nitrate and nifrite nitrogen.

S504: Sulphate sulphur.

SH1S: Dihydrogensulphide sulphur.

Particulate components

o

10.
11.
P2
13.
14.
15.
16.

XS: Slowly biodegradable particulate COD.
XTI: Inert parficulate COD.

XH: Heterofrophic bacferia.

XA: dutotrophic nitrifiing bacteria.

XFB: Fermenitng bacteria.

XAMBE: dceforrophic methanogenic bacteria.

XASRE: Acetorrophic sulphate reducing bacteria.

XS0B: Sulphide exidizing bacteria.

Organic nitrogen and organic phosphoms are modeled as
part of the COD.

5.5

Results - Graphical Display

000 Pressure Head

000 Water Content

000 Terperature

000 Velocity

000 L1 - Dissolved Oxygen

000 L2 - Fermentable Biodegr. COD
00 L3 - Fermentation Products
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000 L7 - Sulphate Sulphur (504)

000 L& - Dihydregensulphide Sulphur (H25)
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000 L10 - Inert Particulate COD

000 L17 - Tracer

000 52 - Fermentable Biodegr. COD
00 53 - Fermentation Products

000 54 - Inert Soluble COD

000 55 - Ammonia MH4-M

000 59 - Slowly Biodegr. COD

000 510 - Inert Particulate COD

000 511 - Heterotrophic Bacteria

000 512 - Autotrophic Bacteria

00)) 513 - Fermenting Bacteria

000 514 - Acet. Methan. Bact.

007 515 - Acet. Sulphate Red. Bact.
000 516 - Sulphide Oxidising Bacteria
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Langergraber, G., and J. Siminek, The Multi-component Reactive Transport Module CW2D for Constucted Wetlands for the
HYDRUS Software Package, Manual — Version 1.0H{YDRUS Software Series, Department of Environmental Sciences,
University of California Riverside, Riverside, CA, 72 pp., 2006.

Langergraber, G., D. Rousseau, J. Garcia, and J. Mean, CWML - A general model tosteibe biokinetic processes in subsurface
flow constructed wetlands, Water Science Technolog$9(9), 1687-1697, 2009.




Processes WD (Langergraber and Sinminek. 2005) CWNMI1 (Langergraber et al., 2009b)

c Heterotrophic bacteria: Heterotrophic bacteria:
1. Hydrolysis: conversion of CS into CEL 1. Hydrelysis: conversion of XS into SF.
41 2. Aevobic grewth of XH on CR 2. Aevobic growth ef XH on SF (mineralization of erganic
£ 3 (mineralization of organic matter). matter).
E 3. Aneoxic growth af XH on CR (denitrification 3. Aevobic growth of XH on 54 (mineralization of erganic
=2 on NOIN). matter).
1] 4. Anoxic growth af XH on CR (denitrification 4. Anoxic growth af XH on SF (denitrification).
on NO3N). 5. Anoxie growth af XH on 54 (denitrification).
n 5. Lysis of XH. 6. Lysis of XH.
07 Autotrophic bacteria:
; Antotrophic bacteria: 7. Aerobic growth of XA on SNH (nitrification).
6. Aerobic growth of X4ANs on SNH 8. Lysis of XA
% 6l (ammonivm cxidation). Fermenting bacteria:
S 7. Lysis gf XANs. 9. Growth of XFE (fermentation).
24 8. Aevebic growth of XAND on SNH (nitrite 10. Lysis of XFBE.
“ cxidation). Acetotrophic methanogenic bacteria:
21 0. Lysis of XAND. 11. Growth of XAMB: Anaercbic growth of acetotrophic,
methanogenic bacteria XAMB on acetate SA.
0 12. Lysis of XAMB.
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Time thours) Acetotrophic sulphate reducing bacteria:
13. Growth of XASEB: Anaercbic growth of acetotrophic,
sulphate reducing bacteria.
14. Lysis of XASEEB.
. . Sulphide exidizing bacteria:

HeterOtrOphIC Organlsms XH 15. Aerobic growth of X50B on SH25: The opposite process to

process 13, the oxidation of SH2S to 8504.
16. Anoxic growth of XSOB on SH2S: Similar to process 15 but

under anoxic conditions.
17. Lysis of XS0B.




HYDRUS and its Modules

¢ HYDRUS + Fumigant




¢ HYDRUS-1D and HYDRUS (2D/3D)

- Variably-Saturated Water Flow
- Solute Transport

- Heat Transport

- Root Water Uptake

¢ Fumigant
- Presence or absence ofaurface Tarp
- Temperature dependence ofarp properties
- Removal of Tarp at specified time
- Additional injection of fumigants into the transport
domain at a specified location at specified time




Application of the Fumigant Module
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Spurlock, F., J. Siminek, B. Johnson, and A. Tuli, Sensitivity analysis of vadose zone
fumigant transport and volatilization, Vadose Zone Journall2(2), 12 pp., 2013.




¢ HYDRUS + Overland Flow

¢ HYDRUS + Freezing/Thawing, Meteo
¢ HYDRUS + Soil Mechanical Stresses
¢ HYDRUS + Global Optimization

¢ HYDRUS + MODFLOW




piDRUS Wel I

Over 3 thousand downloads in 2008, over 5 thousand in 2009,
and about 10 thousand downloads in 2010 and 2011;
over 10 thousand registered members.

http://www.pc-progress.com/en/Default.aspx




Two-Dimensional Examples Domain Design and FE-Mesh generation

2.01 - 2D Domain composed of three irreguiar regions
Video (1.2 MB) - Blay - Download

This demo demonstrates how to use multiple surfaces to define a single transport domain, and how
these multiple surfaces can be usedto assign various domain properties (e.g., materials).

2.02 - 2D Domain with holes and integrated subregion
Video (1.2 MB} - Flay - Download

This demo demonstrates how to design a complex two-dimensional transport domain that includes two
holes and an internal surface. The transport domain is then discretized using a refined FE-Mesh inside of
the internal surface.

2.03 - 3D Domain, Solid 1 - three video tutorials
Cpen tutarial

This series ofthree demos shows how users can create a transport domain shown on the picture. The
demonstration is divided into three parts. First, the main transport domain is defined, then a verical hole is
created in the domain, after which the heights are adjusted.

2.04 - 30 Domain, Solid 2 - three video tutorials
Open tutarial

This series of three demos shows users how to create a transport domain shown on the picture and to
discretize it into finite elements. We first create the transport domain, then add lines at the surface that will
help us to discretize the transpont domain into finite elements in the next step, after which we implement
the finite element discretization.

2.05 - 3D Domain, Solid 3 - three video tutorials

Open tutorial

This series of three demos shows users how to create a transport domain in the picture, to discretize the
domain into finite elements, to create sections, and to specify initial and boundary conditions.

2.06 - 3D Domain, Solid 4 - splitting a Solid into Sub-Layers and Columns
Video (5.3 MB) - Flay - Download

This demo shows how to design a complex three-dimensional transport domain (which includes
horizontal pipes). The transport domain is divided into four sub-layers (one with variable thickness).
Additional FE-Mesh sections are generated as intersections of sub-layers and vertical columns. The use
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3 Project Group: Drip

O Description: Examples invobing subsurace drip irigation: described in Hansan et al (2006, 2008), Skaggs et al (2004), and Siyal &t al
(2009)

O Availability: Download HYDRUS projects now (11,1 MB)
Project Description

SubZfia Subsurface drip imigation for the B fertigafion strategy (fertigation near beginning of irrigation). Sclutes considered
urea-ammonium-nitrate, potassium, phasphorus (Hanson et al | 2006)

Sub2fic Subsurface drp imgation for the E fetdigation strategy (fertigation near the end of irmigation). Solufes considered:
urea-ammonium-nitrate, potassium, phosphorus (Hanson et al, 2006)

Sub2f3 Subsurface drip irigation for the M50 fertigation stralegy (lertigation during the middie 50% of the irrigation event).
Solutes considered: urea-ammonium-nitrate, potassium, phosphorus (Hanson et al,| 2006)

Sub1112 Subsurface drip imigation, water table depth of 0.5 m, 0.3 dSim, imigation efficiency=0.9, T perweak (Hanson et al.
2008}

Subi212 Subsurface drip imigation, water table depth of 0.5 m, 1.0 d%'m, imigation efficiency =0.9, 7 perweek (Hanson et al_,
2008).

Sub2111 Subsurface drp imgation, waler table deplh of 1.0 m, 0.3 dSim, imgation efficency =0.9, 2 par weak (Hanson el al,,
2008).

Refarences:
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Water Management, 86, 102-113, 2006.

Hanson, B. R, J. Siminek and J. W, Hopmans, Laaching with subsurfacs rip imigatipn under saline, shatiow qround water condifigns
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Skaggs T H., T. J. Trout J. Simdnek and P. J. Shouse, Comparison of Hydmus-2D simulatipns of drip imigation with aipsriments)

abserations, ) of Imigation and Drainage Enginesring, 130(4), Et}d 31(:! 2004

Sival, A A, M. Th. van Genuchlen, and T, H. Skaggs, Perdormance of pitcher imgafion svstems, Soil Science, 174(8), 312-320, 2009




Mathematical Models have the potential to be powerful tools to help
understand and quantify the complexities of variougprocesses in the
subsurface.

Mathematical Models are:

¢ arepository for currently available knowledge
¢ represent a practical tool to improve our understanling of and
ability to quantify various processes

Meaningful applications of Mathematical Modelsinclude:

predicting outcomes under given assumptions
testing hypotheses

identifying conditions and locations of increasedisk
developing treatment strategies, and

Informing management decisions
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However, it should be acknowledged thalathematical Modelsare
not expected to be precise predictors of reality,ud are only as good
as their input parameters and modeling assumptions.




Questions and Suggestions?

P
B - —

Thank you for
your attention




