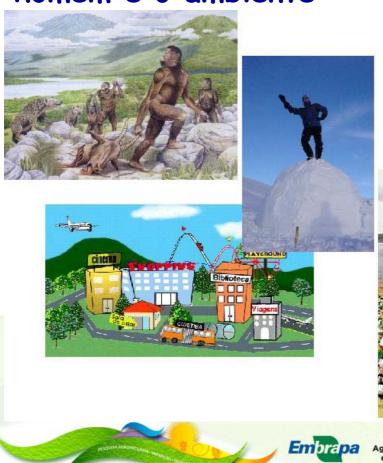


Aplicação de resíduos ao solo: a microbiologia pode ajudar no monitoramento?

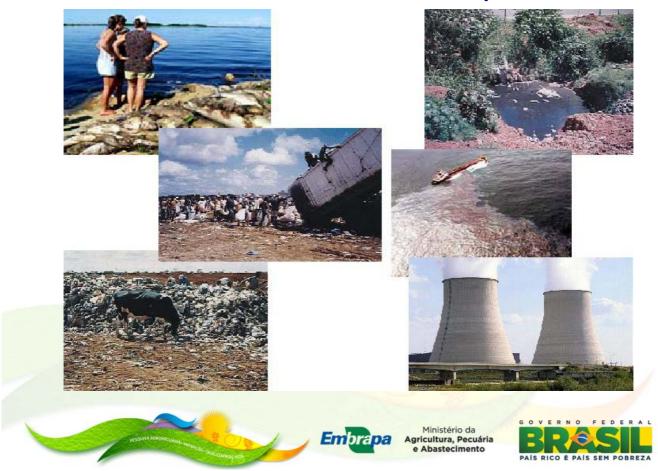
O quê abordaremos nesta manhã?

- > Atividades humanas vs. geração de resíduos;
- > Qual o destino ?
- > Constituíntes dos resíduos e potencial de uso;
- > Microrganismos e processos microbiológicos no monitoramento;
- > Como interpretar os comportamentos ?
- > Considerações finais.

Os ambientes naturais



O homem e o ambiente



O desenvolvimento e suas consequências

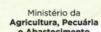
Degradação do solo

Em 1 g de terra: número de microrganismos equivalente à população do planeta: atividade. (Doran et al., 1996)

Só conhecemos a ponta do iceberg...

Consequências da degradação do solo e da água

- · Perda de diversidade;
- · Perda da funcionalidade;
- Pressão sobre novas áreas.


Custos Ambientais

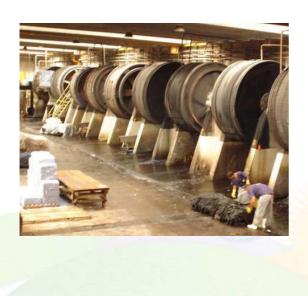
- Maior dependência externa;
- · Menor eficiência;
- · Menor produção.

Custos Econômicos

Água, N, K.

Estações de tratamento de esgoto.

C, N, P, Ca, efeito corretivo



Lodo de curtume.

C, N, S, Ca, efeito corretivo

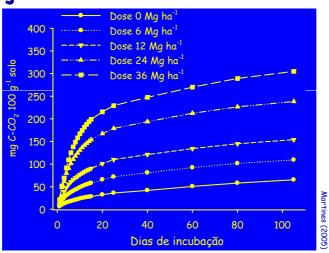
Lixiviado de aterros sanitários

Efluente de esgoto tratado

Água, N, K, Na

Relação DQO/DBO de alguns resíduos

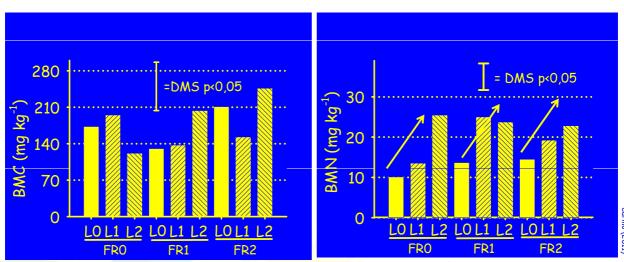
Resíduo	DQO (mg/L)	DBO ₅ (mg/L)	DQO/DBO ₅
Esgoto doméstico bruto	500	300	1,7
Esgoto doméstico tratado	50	10	5
Vinhaça	60.000	30.000	2
Resíduo de curtume	13.000	1.270	10,2
Res. ind. papel e celulose	620	226	2,7
Res. tratado ind. papel e			
celulose	250	30	8,3
Lixiviado de aterro	2,325	150	15,5



Mineralização do resíduo

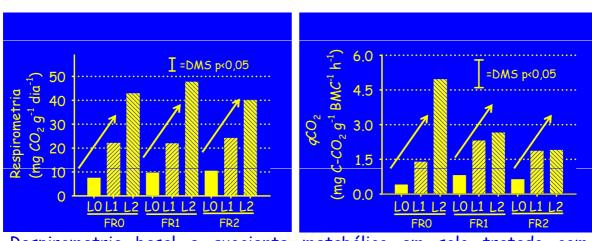
Cuidado com carbonatos!

Doses de Lodo	C-degradado =			Ī	
(Mg ha ⁻¹)	C ₀ (mg 100g ⁻¹ solo)	k (dia ⁻¹)	Meia-vida (dia)	R ²	
6	41,58	0,0924	8	0,99**	Mar
12	82,68	0,1072	6	0,99**	Martines (
24	160,40	0,1128	6	0,99**	(2002)
36	221,90	0,1022	7	0,99**	_



Atributos microbiológicos

Biomassa microbiana de carbono (BMC) e de nitrogênio (BMN) em solo tratado com biossólido (LO = 0; L1 = 46; L2 = 92 g kg $^{-1}$) e fosfato de Gafsa (FRO = 0; FR1 = 0,7; FR2 = 1,4 g kg $^{-1}$). DMS representa a diferença mínima significativa (Tukey).



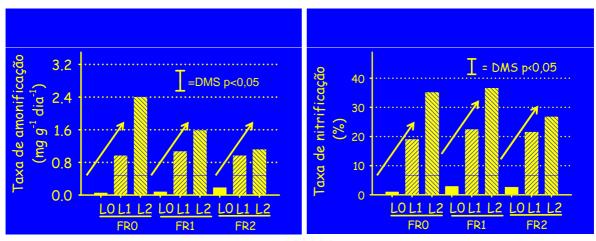
Atributos microbiológicos

Respirometria basal e quociente metabólico em solo tratado com biossólido (LO = 0; L1 = 46; L2 = 92 g kg⁻¹) e fosfato de Gafsa (FRO = 0; FR1 = 0,7; FR2 = 1,4 g kg⁻¹). DMS representa a diferença mínima significativa (Tukey).

Atributos bioquímicos

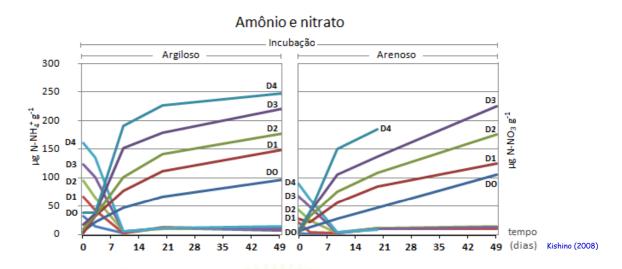
C total, atividades enzimáticas e condutividade elétrica em solo tratado com biossólido (LO = 0; L1 = 46; L2 = 92 g kg $^{-1}$) e fosfato de Gafsa (FRO = 0; FR1 = 0,7; FR2 = 1,4 g kg $^{-1}$). Letras distintas indicam diferença estatística (Tukey, p<0,05).

Variáveis	Fosfato de Rocha		Biossólido			
	FR0	FR1	FR2	LO	L1	L2
C total (g kg ⁻¹)	14,8 A	14,7 A	14,3 A	11,5 C	15,0 B	17,4 A
Desidrogenase (µg TTF g-1 24 h-1)	2,5 B	3,0 AB	3,9 A	1,1 B	6,4 A	1,8 B
Urease (µg N-NH ₄ + g ⁻¹ 2 h ⁻¹)	42,0 A	49,3 A	41,6 A	22,3 <i>C</i>	62,6 A	48,0 B
Celulase (µg g ⁻¹ AR 24 h ⁻¹)	473,3 A	405,1 A	432,3 A	447,7 A	438,2 A	424,8 A
Fosfatase ácida (µg g ⁻¹ PNF h ⁻¹)	574 A	569 A	576 A	567 A	572 A	581 A
Condutividade elétrica (µS cm ⁻¹)	1493 A	1443 A	1395 A	258 C	1327 B	2746 A

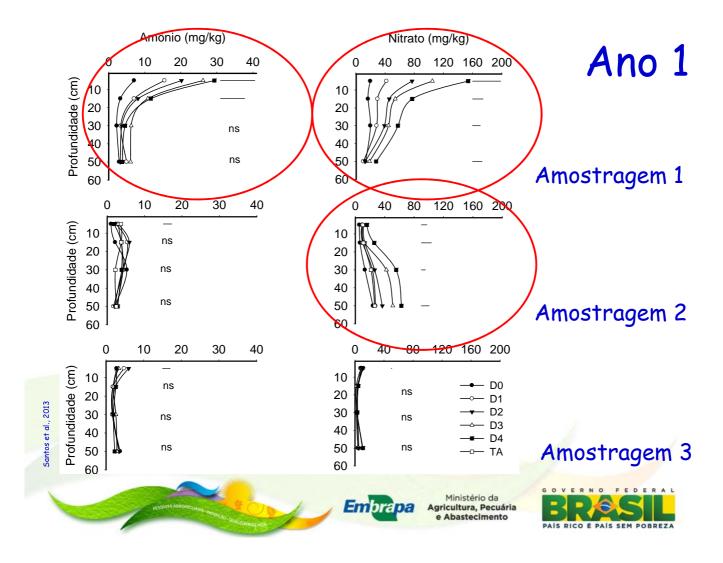


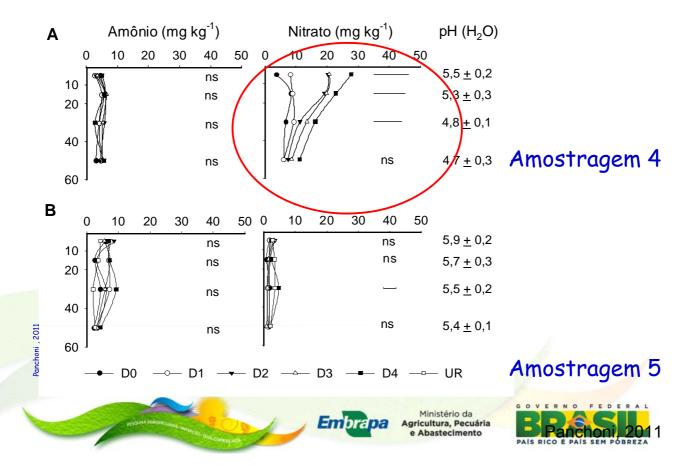
Dinâmica do Nitrogênio

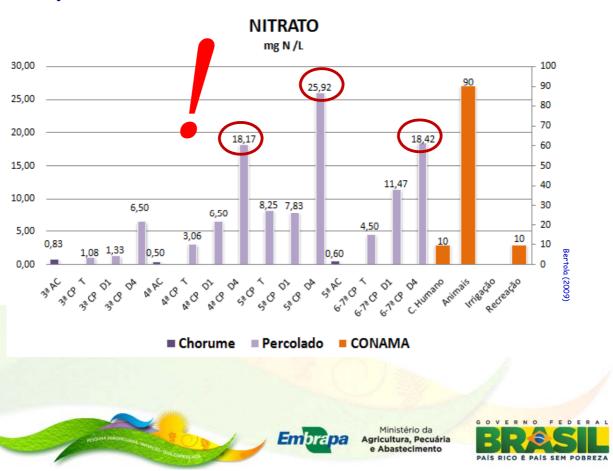
Taxas de amonificação e de nitrificação em solo tratado com biossólido (LO = 0; L1 = 46; L2 = 92 g kg $^{-1}$) e fosfato de Gafsa (FRO = 0; FR1 = 0,7; FR2 = 1,4 g kg $^{-1}$). DMS representa a diferença mínima significativa (Tukey).

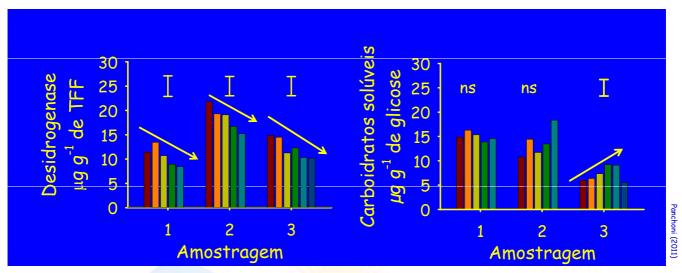


Dinâmica do Nitrogênio


Teores de amônio e nitrato em solo argiloso e arenoso tratados com lixiviado de aterro sanitário (D0 = 0; D1 = 30; D2 = 60; D3 = 90; D4 = 120 kg ha⁻¹ de N. Lixiviado contendo 918 mg L⁻¹ (N total) = 850 mg L⁻¹ N-NH₄⁺ + 13 mg L⁻¹ N-NO₃⁻



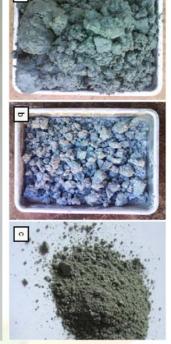



Ano 2

Consequência...

Atributos bioquímicos

Atividade de desidrogenase e teores de carboidratos solúveis em solo argiloso após 4, 5 e 6 aplicações de lixiviado de aterro sanitário (D0 \blacksquare = 0; D1 \blacksquare = 30; D2 \blacksquare = 60; D3 \blacksquare = 90; D4 \blacksquare = 120 kg ha⁻¹ de N como lixiviado; TA \blacksquare = 120 kg ha⁻¹ de N como ureia. Barras de erro representam a diferença mínima significativa (Tukey p<0,05).


Embrapa

Ministério da Agricultura, Pecuária

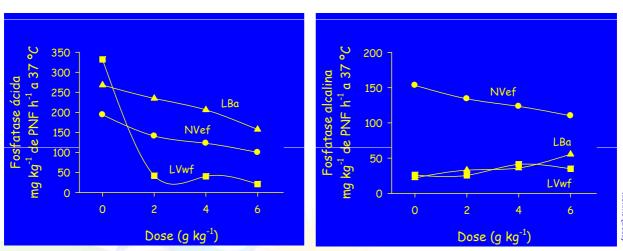
PAÍS RICO É PAÍS SEM POBREZA

Ex.: lodo galvânico

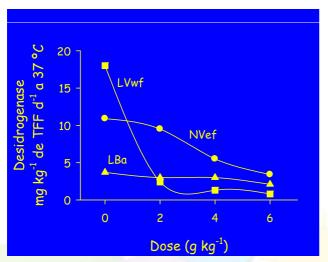

Elementos	Teores totais (g kg ⁻¹)	/AD
Ca	329,5	Si ist.
Mg	236,3	
Ni	143,1	
Cr	83,5	
Fe	56,9	
Cu	49,4	
Si	37,8	
Al	24,7	
5	19,3	
Zn	16,9	600
K	2,1	àà a
V	0,6	

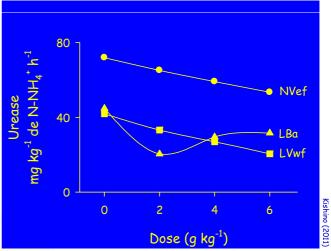
Atributos microbiológicos

Biomassa microbiana de C e de N em três tipos de solo que receberam doses crescentes de lodo galvânico.



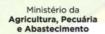
Atributos bioquímicos


Atividade de fosfatase ácida e de fosfatase alcalina em três tipos de solo que receberam doses crescentes de lodo galvânico.



Atributos bioquímicos

Atividade de desidrogenase e de urease em três tipos de solo que receberam doses crescentes de lodo galvânico.



Considerações finais

- > Efeitos podem ser positivos ou negativos;
- > Interpretar conforme a função, com cautela;
- > Conjunto mínimo de indicadores;
- > Ajustar dose para cada condição;
- > Aplicações parceladas de resíduos, fator mais limitante, legislação;
- > Interdisciplinaridade de áreas do conhecimento;
- > Monitoramento constante.

Agradecimentos

- · Comissão organizadora do XXXIV CBCS;
- · CNPq e CAPES;
- Atuais e ex-alunos de graduação e pósgraduação;
- · Universidade Estadual de Londrina;
- · Embrapa Soja.

