Influência do Uso e Ocupação do Solo na Qualidade da Água da Bacia Hidrográfica da Serra da Mantiqueira⁽¹⁾

<u>Isabel Cristina de Barros Trannin</u>⁽²⁾; Marcos Henrique da Silva⁽³⁾; Celso de Souza Catelani⁽⁴⁾; Alessandra M. Mattos Branco⁽³⁾; Vanessa Villalta Lima Roman⁽³⁾; Sílvio Jorge Coelho Simões⁽²⁾

(1)Trabalho executado com recursos da Fundação para o Desenvolvimento Científico e Tecnológico – FDCT/Prefeitura Municipal de Guaratinguetá; (2)Professor da Universidade Estadual Paulista "Júlio de Mesquita Filho", campus de Guaratinguetá. Avenida Ariberto Pereira da Cunha, 333, Pedregulho, Guaratinguetá, São Paulo, CEP:12.516-410; e-mail: isatrannin@feg.unesp.br; (3)Mestrando do Programa de Pós-Graduação em Engenharia Civil e Ambiental, da Universidade Estadual Paulista "Julio de Mesquita Filho", (4)Doutorando do Programa de Pós-Graduação em Engenharia Mecânica, da Universidade Estadual Paulista "Julio de Mesquita Filho".

RESUMO: Informações sobre a qualidade da água são de grande relevância para a gestão pública dos recursos hídricos em bacias hidrográficas. O objetivo deste estudo foi avaliar a influência do uso e ocupação do solo na qualidade da água da bacia hidrográfica da Serra da Mantiqueira, que abrange os municípios de Campos do Jordão, Santo Antônio do Pinhal e São Bento do Sapucaí, no Estado de São Paulo. Foram analisados os parâmetros: temperatura, turbidez, sólidos totais, pH, OD, DBO, nitrogênio total, fósforo total e Escherichia coli em vinte pontos dos principais corpos d'água desta bacia, sob influência de diferentes tipos de uso e ocupação do solo, como urbanização, agropecuária, matas ou florestas naturais, agricultura e pastagens. A amostragem foi realizada na estação chuvosa em fevereiro de 2013 e os procedimentos adotados para coleta e análises laboratoriais seguiram metodologias descritas no Standard Methods for the Examination of Water & Wasterwater (2005). Os parâmetros Escherichia coli, fósforo total, nitrogênio total e turbidez não atenderam os padrões estabelecidos pela Resolução CONAMA 357/05 para rios de classe 2, em alguns dos pontos avaliados. No entanto, não foi identificada relação direta entre os tipos de uso e ocupação do solo e a qualidade da água da bacia. Este estudo evidenciou a necessidade da adoção de medidas de intervenção no uso e ocupação do solo desta bacia hidrográfica para atender aos padrões de qualidade, principalmente quanto aos índices de coliformes (Escherichia coli) e teores de fósforo total.

Termos de indexação: manejo do solo; recursos hídricos; poluição das águas.

INTRODUÇÃO

O uso e ocupação do solo de forma inadequada e a deficiência do saneamento básico têm causado a poluição das águas, afetando a disponibilidade dos recursos hídricos que integram uma bacia hidrográfica. A avaliação da qualidade da água de uma bacia hidrográfica é importante para subsidiar ações que visem a sua adequação aos padrões de qualidade para os diferentes usos definidos no enquadramento estabelecido pela Resolução CONAMA 357/2005.

A qualidade da água pode ser avaliada por diversos parâmetros, que traduzem as suas principais características físicas, químicas e biológicas (Von Sperling, 2005).

Com o objetivo de avaliar a influência do uso e ocupação do solo na qualidade da água da bacia hidrográfica da Serra da Mantiqueira, foram analisados os nove parâmetros que integram o Índice de Qualidade das Águas (IQA) criado pela Companhia Ambiental do Estado de São Paulo — Cetesb: temperatura, turbidez, sólidos totais, pH, fósforo total, nitrogênio total, oxigênio dissolvido (OD), demanda bioquímica de oxigênio (DBO) e Escherichia coli, em vinte pontos localizados à montante e à jusante das principais atividades desenvolvidas nesta bacia e que não são contemplados na rede de monitoramento da Cetesb.

MATERIAL E MÉTODOS

Na bacia hidrográfica da Serra da Mantiqueira os corpos hídricos ocupam uma área de 30,8 ha, distribuídos entre os municípios de Campos do Jordão, São Bento do Sapucaí e Santo Antônio do Pinhal, cuja área urbanizada corresponde a 3.058,33 ha. Esta bacia é composta por duas unidades principais: 1) Sapucaí-Mirim, a oeste, na área de influência dos municípios de Santo Antônio do Pinhal e São Bento do Sapucaí e 2) Sapucaí-Guaçu, a leste, na área de influência de Campos do Jordão (**Figura 1**).

Neste estudo foram analisados parâmetros físicos, químicos e biológicos de amostras de água coletadas em vinte pontos estratégicos, distribuídos entre os rios Sapucaí-Guaçu e Sapucaí-Mirim, à montante e à jusante dos principais usos e ocupação do solo, por meio dos quais foi possível

avaliar a influência destas atividades produtivas na qualidade da água da bacia (**Tabela 1**).

UNIDADES HIDROGRÁFICAS PRINCIPAIS

Figura 1 – Principais unidades hidrográficas que compõem a bacia da Serra da Mantiqueira.

Os parâmetros físicos, químicos e biológicos analisados foram: temperatura, pH, oxigênio dissolvido (OD), demanda bioquímica de oxigênio (DBO5,20), *Escherichia coli*, nitrogênio total, fósforo total, sólidos totais e turbidez, que compõem o Índice de Qualidade da Água (IQA), estabelecido pela Cetesb. Na avaliação e interpretação dos resultados obtidos para cada parâmetro de qualidade os corpos d'água desta bacia foram enquadrados como classe 2, de acordo com o estabelecido pela Resolução CONAMA 357/2005.

A amostragem foi realizada na estação chuvosa, nos dias 4 e 5 de fevereiro de 2013. Os procedimentos adotados para coleta e análises laboratoriais seguiram as metodologias descritas no Standard Methods for the Examination of Water and Wasterwater – 19ª Edição/SW846 APHA (Eaton et al., 1995).

RESULTADOS E DISCUSSÃO

De acordo com os resultados apresentados na **tabela 2**, verificou-se que para *E. coli*, com exceção dos pontos 12, 14 e 17, todos os demais apresentaram valores superiores ao padrão de qualidade estabelecido pela Resolução CONAMA 357/2005 para rios de classe 2, cujo número mais provável (NMP) é de 1000 100 mL⁻¹. Em pontos relacionados a áreas de urbanização e de uso agropecuário, nos três municípios avaliados os valores obtidos foram 23 vezes superior à este padrão. De acordo com o uso e ocupação do solo, esse elemento pode ter sido proveniente de fezes humanas e animais.

No caso da DBO, todos os pontos avaliados atenderam ao padrão estabelecido pela Resolução CONAMA 357/2005, que é ≤ 5 mg L⁻¹.

Como a concentração de P total foi superior a 0,1 mg L-1 em 14 dos 20 pontos avaliados (2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 18 e 19), verificou-se que houve a influência dos diferentes tipos de uso e ocupação do solo no incremento deste elemento na água. O P total pode ter sido originado por despejos domésticos, excrementos de animais, fertilizantes e também pode ter ocorrência natural. Devido a sua baixa mobilidade no solo, a presença de fósforo em elevadas concentrações na água pode ter sido causada por processos erosivos e carreamento de sedimentos para os corpos d'água, o que é de ocorrência comum em áreas de elevada declividade, como a Serra da Mantiqueira.

Quanto ao N total somente nos pontos 3, 5, no município de Campos do Jordão, respectivamente sob os usos agropecuária (-10%) e matas e/ou florestas naturais não atendem ao padrão estabelecido pela Resolução CONAMA 357/05 que relaciona as concentrações de N total com valores de pH.

Em 19 dos 20 pontos analisados, os valores de oxigênio dissolvido (OD) atenderam aos padrões estabelecidos pela Resolução CONAMA 357/05, apresentando concentrações superiores a 5,0 mgL⁻¹. Somente no ponto 16, em São Bento do Sapucaí, sob influência de urbanização o valor foi inferior a este padrão de qualidade, provavelmente devido aos despejos domésticos, que contribuem para o aumento da DBO e, consequentemente, redução do OD.

Todos os pontos analisados apresentaram concentrações de sólidos totais inferiores a 500 mg L⁻¹ e, portanto, atenderam aos limites estabelecidos pela Resolução CONAMA 357/05.

Verificou-se que os valores de pH não sofreram alterações significativas ao longo do curso d'água e permaneceram dentro da faixa de 6,0 a 9,0, estabelecido pela Resolução CONAMA 357/2005.

A Resolução CONAMA 357/05 não estabelece limites para temperatura, no entanto, este é um dos parâmetros físicos mais importantes nos estudos dos ecossistemas aquáticos, uma vez que influencia diretamente a cinética dos processos metabólicos oxidativos vitais, como a respiração; a solubilidade dos gases dissolvidos, como o oxigênio e a densidade da água (Queiroz, 2003). Nos pontos analisados neste estudo, a temperatura da água variou de 16,5 °C a 24,8 °C, não apresentando anormalidades ou mudanças que representassem algum tipo de poluição pontual.

Os pontos 2, 3, 5, 8 e 9 apresentaram valores superiores aos limites estabelecidos pela Resolução CONAMA 357/05, que é de 100 UNT. O período

chuvoso, aliado à falta de mata ripária, pode ter favorecido o carreamento de sedimentos para os corpos d'água, aumentando a turbidez nestes pontos.

CONCLUSÕES

Não há relação direta entre os diferentes tipos de uso e ocupação do solo e a qualidade da água da bacia hidrográfica da Serra da Mantiqueira.

Há necessidade de adoção de medidas de intervenção no uso e ocupação do solo desta bacia para atender aos padrões de qualidade da água estabelecidos pela Resolução CONAMA 357/05, principalmente quanto aos índices de coliformes (*Escherichia coli*) e teores de fósforo total.

REFERÊNCIAS

CONAMA - CONSELHO Nacional do Meio Ambiente. Resolução CONAMA Nº357, de 17 março 2005. Brasília, 2005.

EATON, A.D.; CLESCERI, L.S.; GREENBERG, A. E. Standards Methods for the examination of water and wastewater. 19.ed. Washington, D.C, American Public Health Association, 1995. Paginação irregular.

QUEIROZ, A. M. Caracterização limnológica do lagamar do Cauípe – Planície Costeira do município de Caucaia – CE. Dissertação de Mestrado (Desenvolvimento e Meio Ambiente), Universidade Federal do Ceará, UFC, Fortaleza, 2003. 204p.

VON SPERLING, M. Introdução à Qualidade das Águas e ao Tratamento de Esgotos. 2ª Edição. ed. Belo Horizonte: DESA, UFMG, 1996.

Tabela 1 – Localização dos pontos de amostragem de água sob a influência de diferentes usos e ocupação do solo na bacia hidrográfica da Serra da Mantiqueira.

Pontos	zie ila zacia maregian	ica da Serra da Martilqueira.	Coordenadas				
de	Município	Uso e Ocupação do solo	Latitude (S)	Longitude (W)	UTM - 23 K - SAD 69		
coleta			Latitude (3)	Longitude (vv)	Χ	Υ	
P01	Campos do Jordão	Urbanização	22° 45′ 36.23″	45° 37' 16.82"	436211	7482898	
P02	Campos do Jordão	Urbanização	22° 41' 44.54"	45° 30' 47.29"	447295	7490065	
P03	Campos do Jordão	Agropecuária (-10%)	22° 43′ 06.38″	45° 27' 26.87"	453021	7487567	
P04	Campos do Jordão	Matas e/ou Florestas Naturais	22° 41' 21.00"	45° 28' 51.02"	450610	7490800	
P05	Campos do Jordão	Matas e/ou Florestas Naturais	22° 41' 12.19"	45° 28' 40.27"	450916	7491072	
P06	Santo Antonio do Pinhal	Agropecuária (25 e 10%)	22° 41' 34.91"	45° 30' 18.10"	448127	7490364	
P07	Santo Antonio do Pinhal	Agropecuária (25 e 10%)	22° 51' 09.83"	45° 41' 26.62"	429135	7472608	
P08	Santo Antonio do Pinhal	Urbanização	22° 49' 30.92"	45° 44' 09.46"	424479	7475627	
P09	Santo Antonio do Pinhal	Urbanização	22° 49' 37.07"	45° 38' 07.59"	434795	7475486	
P10	Santo Antonio do Pinhal	Pastagens + Matas e/ou Florestas	22° 49' 41.08"	45° 41' 05.33"	429729	7475340	
P11	Santo Antonio do Pinhal	Pastagens + Matas e/ou Florestas	22° 48' 53.78"	45° 45' 07.91"	422807	7476761	
P12	São Bento do Sapucaí	Agropecuária (25 e 10%)	22° 43′ 34.39″	45° 48' 50.27"	416414	7486549	
P13	São Bento do Sapucaí	Pastagens Naturais	22° 42' 34.67"	45° 47' 14.58"	419134	7488400	
P14	São Bento do Sapucaí	Pastagens Naturais	22° 43′ 50.21″	45° 47' 29.42"	418723	7486075	
P15	São Bento do Sapucaí	Urbanização	22° 42' 10.45"	45° 44' 01.98"	424625	7489173	
P16	São Bento do Sapucaí	Urbanização	22° 40' 41.31"	45° 44' 31.68"	423764	7491910	
P17	São Bento do Sapucaí	Agricultura	22° 39' 30.39"	45° 47' 29.42"	432752	7494133	
P18	São Bento do Sapucaí	Agricultura	22° 40' 43.59"	45° 42' 57.53"	426451	7491853	
P19	Sapucaí Mirim	Agropecuária (50 e 25%)	22° 44' 34.85"	45° 44' 21.19"	424099	7484730	
P20	São Bento do Sapucaí	Agropecuária (50 e 25%)	22° 43′ 17.43″	45° 40' 15.43"	431098	7487144	

Tabela 2 – Parâmetros físicos, químicos e biológicos indicadores de qualidade da água coletada em pontos da bacia hidrográfica da Serra da Mantiqueira sob diferentes usos e ocupação do solo e respectivos padrões de qualidade estabelecidos pela Resolução CONAMA 357/05 para rios de classe 2.

Pontos de	e Parâmetros								
coleta	E. coli	DBO	P total	N total	OD	Sólidos totais	рН	Temperatura	Turbidez
	(NMP 100 mL ⁻¹)\1	mg L ⁻¹					°C	UNT\2	
P01	5.100	<2,0	0,091	<1,0	7,66	48	7,54	16,8	60
P02	23.000	2,5	0,734	2,44	7,61	107	6,97	17,6	270
P03	16.000	<2,0	1,922	4,15	7,07	48	6,67	17,4	280
P04	1.100	<2,0	<0,05	<1,0	7,94	36	7,74	16,5	3,8
P05	23.000	<2,0	1,094	4,3	7,51	48	6,71	17,5	240
P06	3.600	<2,0	0,247	<1,0	7,91	74	6,92	17,9	70
P07	23.000	<2,0	0,434	<1,0	6,03	11	6,89	20,6	85
P08	23.000	<2,0	0,720	<1,0	7,96	8	6,91	19,9	250
P09	23.000	<2,0	1,201	2,11	6,55	16	6,73	21,1	130
P10	23.000	<2,0	0,254	<1,0	7,85	14	7,42	21,0	32
P11	2.200	<2,0	0,281	<1,0	7,84	91	8,12	20,6	27
P12	360	<2,0	0,301	<1,0	9,46	10	7,8	19,1	27
P13	1.100	<2,0	0,075	<1,0	8,17	55	7,61	19,6	7
P14	920	<2,0	< 0,05	<1,0	6,76	77	7,12	21,3	3,5
P15	23.000	<2,0	0,291	<1,0	7,34	13	7,47	22,3	60
P16	2.200	<2,0	0,431	<1,0	3,09	107	6,58	20,9	40
P17	690	<2,0	0,057	<1,0	8,29	17	8,79	17,1	1,6
P18	5.100	<2,0	0,160	<1,0	7,85	69	7,3	18,8	18
P19	3.600	<2,0	0,308	<1,0	7,26	32	7,62	24,8	75
P20	2.200	<2,0	0,093	<1,0	7,78	62	7,39	21,6	15
CONAMA	1000 100 mL ⁻¹	≤ 5	0,1	variável	≥ 5	500	6,0 - 9,0		100
357/05				com pH ^{\3}					

¹¹NMP (número mais provável); ¹² UNT: Unidade nefelométrica de turbibez; ¹³ N total varia com o pH: N total = até 3,7 (pH \leq 7,5); N total = até 2,0 (pH 7,5 – 8,0); N total = até 1,0 (pH 8,0 a 8,5) e N total = até 0,5 (pH > 8,5).