Eficiência simbiótica de diferentes bactérias nodulíferas no feijoeirocomum⁽¹⁾.

Michel de Paula Andraus⁽²⁾; <u>Aline Assis Cardoso</u>⁽²⁾; Enderson Petrônio de Brito Ferreira⁽³⁾; Gustavo Hernane Costa Oliveira⁽⁴⁾; Rafael Lopes Esteves⁽⁴⁾; Marcílio José de Oliveira Junior⁽⁴⁾.

(1) Trabalho executado com recursos da Embrapa Arroz e Feijão e Capes.

RESUMO: O feijoeiro-comum (*Phaseolus vulgaris L.*) é a principal fonte de proteína na dieta da maioria da população brasileira. O nutriente absorvido em maior quantidade pelo feijoeiro-comum é o nitrogênio. Por isso, o suprimento adequado desse para а cultura é fundamental, principalmente no período de maior absorção, que ocorre dos 35 aos 50 dias após a emergência da planta. Em razão desses fatores e da promiscuidade da nodulação observada no feijoeiro-comum, é necessário tomar certos cuidados para se obter um resultado satisfatório com a inoculação. Entretanto ainda são poucos os estudos em relação a novas estirpes do gênero Rhizobium, sendo necessário mais informações a respeito da interação destes com cultivares de feijoeiro. Por isso foi feito um trabalho em casa de vegetação com o objetivo de avaliar a eficiência simbiótica de estirpes nativas de Rhizobium inoculadas no feijoeiro-comum, cultivar (cv.) Pérola. A estirpe JPRG4A10 se destacou quanto ao número de nódulos, mas para N total e AF não apresentou diferenças estatísticas. Para o fator AF a estirpe padrão SEMIA 4080 foi estatisticamente superior a todas as outras bactérias avaliadas, indicando sua eficiência sobre as outras e que também existem bactérias com potencial de nodulação parecido.

Termos de indexação: fixação, estirpe, nitrogênio.

INTRODUÇÃO

O feijoeiro-comum (Phaseolus vulgaris L.) é a principal fonte de proteína na dieta da maioria da população brasileira. O nutriente absorvido em maior quantidade pelo feijoeiro-comum é o nitrogênio, que apresenta alto custo e é facilmente perdido por volatilização ou lixiviação (Cantarella, 2007). Por isso, o suprimento adequado desse nutriente cultura é fundamental, para а principalmente no período de maior absorção, que ocorre dos 35 aos 50 dias após a emergência da planta (Rosolem & Marubayashi,1994). Em razão desses fatores e da promiscuidade da nodulação observada no feijoeiro-comum, é necessário tomar certos cuidados para se obter um resultado satisfatório com a inoculação.

O uso de um elevado número de células viáveis da estirpe eficiente, selecionada e adaptada às condições do ambiente, pode garantir vantagem competitiva pelos sítios de infecção em relação às BFNN nativas (Moreira & Siqueira, 2006). As estirpes não se adaptavam as condições de clima tropical do país, ficando estas sujeitas a um elevado grau de instabilidade genética, ou seja, podendo perder a capacidade de fixar nitrogênio no feijoeiro (Straliotto, 2002).

Com o recente resultado de estudos, o inoculante comercial para o feijoeiro no Brasil é produzido com uma espécie de rizóbio adaptada aos solos tropicais, o *Rhizobium tropici*, resistente a altas temperaturas, acidez do solo e altamente competitiva, ou seja, em condições de cultivo favoráveis é capaz de formar a maioria dos nódulos da planta, maior número de vagens por planta, maior peso de grãos, elevada produtividade, etc. (Ferreira, et al. 2000 e Straliotto, 2002). Entretanto ainda são poucos os estudos em relação a novas estirpes do gênero Rhizobium, sendo necessário mais informações a respeito da interação destes com cultivares de feijoeiro.

Com isso, o objetivo desse trabalho foi avaliar a eficiência simbiótica de estirpes nativas de Rhizobium inoculadas no feijoeiro-comum, cultivar (cv.) Pérola.

MATERIAL E MÉTODOS

O experimento foi conduzido em casa de vegetação na Embrapa Arroz e Feijão. Estirpes de Rhizobium foram retiradas do solo de diferentes áreas dos Estados de Goiás, Minas Gerais e Paraná. Dez estirpes foram isoladas para serem comparadas também com a estirpe padrão SEMIA 4080. Os vasos utilizados são do tipo Leonard com capacidade para 1000 ml, esses foram preenchidos com areia e o conjunto foi autoclavado para evitar contaminações por outros microrganismos, e então encaminhados à casa de vegetação. Os vasos com areia foram colocados em uma bancada. Foram semeadas duas sementes de feijão cv. Pérola em cada vaso foi feito desbaste cinco dias após a

⁽²⁾ Estudante de Pós-Graduação; Escola de Agronomia e Engenharia de Alimentos da Universidade Federal de Goiás; Goiânia, Goiás; michelandraus@gmail.com; (3) Pesquisador; Embrapa Arroz e Feijão; (4) Estudante de graduação, Universidade Federal de Goiás.

emergência das plântulas. Oito dias após a emergência das plântulas foi realizada a inoculação das bactérias na região próxima às raízes das plântulas com auxilia de uma pipeta. Os vasos foram identificados e aleatorizados, formando delineamento em blocos ao acaso com três repetições.

A irrigação foi feita com água autoclavada e a nutrição pela aplicação de solução nutritiva (Franco & Dobereiner, 1967). Na solução não tinha Nitrogênio (N). Trinta dias após a emergência foi feita a coleta. Retirou-se as plantas de cada vaso cuidadosamente para conservação dos nódulos presentes nas raízes, que foram lavadas em peneira para posterior retirada e contagem de nódulos para determinação do número de nódulos (NN). A parte aérea foi separada da raiz e encaminhada para laboratório para medição de área foliar (AF) em medidor específico. Depois a parte aérea foi guardada em sacos de papel identificados e levados para estufa de secagem a 60°C por 48 horas. Após secagem o material foi moído em moinho específico e encaminhado para laboratório de análise.

Foi realizada análise para determinação de N total da parte aérea pelo método kjeldahl (1883). Os dados foram submetidos a uma análise de variância e as médias submetidas ao teste Tukey a 5% de probabilidade pelo software estatístico Sisvar.

RESULTADOS E DISCUSSÃO

A estirpe JPRG4A10 se destacou quanto ao número de nódulos, mas para N total e AF não apresentou diferenças estatísticas. Para o fator AF a estirpe padrão SEMIA 4080 foi estatisticamente superior a todas as outras bactérias avaliadas, obteve desempenho intermediário nos outros dois fatores quando comparada às outras estirpes (Tabela 1). Essa estirpe foi primeiramente isolada de um solo do Paraná e recomendada desde 1998, tendo comprovado alta capacidade de fixação de N_2 e competitividade contra rizóbios nativos em diversos ensaios realizados no Brasil (Hungria et al., 2000).

Quanto ao N total, as bactérias NVSG7A9 e NVSG5A3 foram estatisticamente superiores às demais, inclusive à SEMIA 4080. A bactéria NVSG4A5 não apresentou nenhum nódulo. Segundo Dobereiner (1966), o aumento da quantidade de N acumulado em leguminosas está diretamente relacionado com a nodulação.

Algumas estirpes apresentaram melhores adaptações as condições ambientais, podendo ser recomendadas para utilização, pois o aumento da capacidade de nodulação tem sido um dos

principais fatores a serem considerados em processos de seleção, visando ao aumento da eficiência da fixação biológica de nitrogênio, embora não seja considerado como medida da eficiência de funcionamento dos nódulos (Herridge e Danso, 1995).

CONCLUSÕES

Existem novas estirpes que podem ser comparadas com a estirpe padrão quanto à eficiência de nodulação.

Algumas estirpes podem não apresentar nódulos devido a fatores genéticos ou do ambiente onde ocorre a simbiose.

REFERÊNCIAS

CANTARELLA, H. Nitrogênio. In: NOVAIS, R.F.; ALVAREZ V., V.H.; BARROS, N.F.; CANTARUTTI, R.B.; NEVES, J.C.L. (Ed.) Fertilidade do solo. Viçosa: Sociedade Brasileira de Ciência do Solo, p.375-470. 2007.

DÖBEREINER J. Azotobacter paspalisp. nov., uma bactéria fixadora de nitrogênio na rizosfera de Paspalum. Pesq Agropec Bras 1: 357–365.1966.

FERREIRA, A. N.; ARF, O.; CARVALHO, M. A. C.; ARAÚJO, R. S.; SÁ, M. E. de.; BUZETTI, S. Estirpes de *Rhizobium tropici* na inoculação do feijoeiro. Scientia Agricola, Piracicaba, v.57, n.3, p.507-512, jul./set. 2000.

FRANCO, A.A.; DÖBEREINER, J. Especificidade de hospedeiro na simbiose com *Rhizobium* - Feijão e influência de diferentes nutrientes. Pesquisa Agropecuária Brasileira, Brasília, v.2, p.467-474, 1967.

HERRIDGE, D.F.; DANSO, S.K.A. Enhancing crop legume N2 fixation through selection and breeding. Plant Soil, v.174, p.51-82, 1995.

HUNGRIA, M.; ANDRADE, D.S.; CHUEIRE, L.M.O.; PROBANZA, A.; GUTTIERREZ-MAÑERO, F.J. & MEGÍAS, M. Isolation and characterization of new efficient and competitive bean (*Phaseolus vulgaris L.*) rhizobia from Brazil. Soil Biol. Biochem., 32:1515-1528, 2000.

MOREIRA, F.M.S.; SIQUEIRA, J.O. Microbiologia e bioquímica do solo. 2.ed. Lavras: Ufla, 729p. 2006.

ROSOLEM, C.A.; MARUBAYASHI, O.M. Seja o doutor do seu feijoeiro. Informações Agronômicas, n.68, p.1-16, 1994.

STRALIOTTO, R. A importância da inoculação com rizóbio na cultura do feijoeiro. Embrapa, CNPAB. Agrobiologia. Seropédica, RJ. 6 p. 2002.

Tabela 1. Número de nódulos (NN), área foliar (AF) e Nitrogênio total (N total) de plantas de feijoeiro-comum cv. Pérola inoculadas com diferentes estirpes de Rhizobium.

Estirpes	NN	AF (cm²/ planta)	N total (mg/ Kg planta)
PCG2A2	94,00ab	43077,00b	9,06b
NVSG7A1	12,70b	77622,00b	5,98c
NVSG7A9	98,00ab	53143,33b	19,56a
JPRG4A10	129,00a	67945,00b	12,79ab
NVSG2A1	33,33ab	63622,33b	10,37b
PCG5A6	60,33ab	67945,00b	12,80ab
NVSG4A5	0,00b	76668,33b	8,21b
NVSG5A3	31,66ab	48904,00b	14,79a
JPRG1A9	10,00b	54160,00b	11,53ab
NVSG4A1	7,00b	53013,33b	9,00b
NVSG82	39,33ab	73926,33b	7,23b
SEMIA 4080	52,70ab	86328,00ab	12,31ab
C.V. (%)	82,20	71,79	25,15

Médias seguidas de mesma letra na coluna não diferem pelo teste de Tukey (P < 0,05).