Fertilidade de solos sob cultivo intensivo do estado de Mato Grosso, Brasil⁽¹⁾

<u>Fernando Luiz Silva</u>⁽²⁾; Maria Aparecida Pereira Pierangeli⁽³⁾; Luís Messias Pierangeli⁽⁴⁾; Luiz Roberto Guimarães Guilherme⁽⁵⁾

⁽¹⁾ Parte do trabalho de pesquisa de pós-doutorado do segundo autor. Trabalho executado com recursos do CNPq. ⁽²⁾ Zootecnista, Mestrando do Programa de Pós-Graduação em Ciências Ambientais da Universidade do Estado de

Mato Grosso – UNEMAT, Cáceres-MT, Brasil, Bolsista do CNPq/CAPES. E-mail: fernandoluiz_s@hotmail.com.

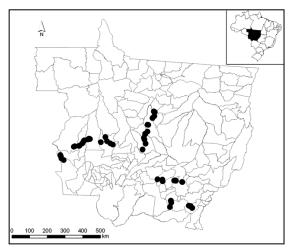
(3) Químico, Técnico do Laboratório de Solos da UNEMAT;

(4) Prof^a. Adjunto da UNEMAT, departamento de Zootecnia, campus de Pontes e Lacerda-MT. E-mail: mapp@unemat.br; (5) Prof. Departamento de Solos, Universidade Federal de Lavras.

RESUMO: O cerrado mato-grossense é um importante bioma, tanto do ponto de vista ambiental quanto econômico, se destacando no cenário nacional pela agricultura altamente tecnificada e produtiva. Este trabalho teve por objetivo a determinação de alguns atributos químicos de fertilidade de solos de áreas de agricultura intensiva do estado de Mato Grosso e compará-los com áreas de vegetação nativa. Foi realizada amostragem de solo de áreas de agricultura intensiva e vegetação nativa em 11 municípios do estado de Mato Grosso nas camadas de 0 a 20 e 20 a 40 cm. O cultivo desses solos promoveu aumento nos valores de pH em água e nos teores de P e das bases trocáveis (K⁺, Ca²⁺, Mg²⁺) e diminuição dos teores de Al³⁺ e H⁺ sem apresentar efeito sobre a MO do solo, resultando em valores mais altos de soma de bases (SB), capacidade efetiva de troca de cátions (CTC_{efe}), saturação por bases (V), e valores mais baixos de saturação por alumínio (m), sem alterar a capacidade total de troca de cátions (CTC_{pH7.0}). Todos os atributos com exceção do Al³⁺ e H⁺ foram superiores na camada superficial do solo.

Termos de indexação: vegetação nativa; Cerrado; agricultura intensiva

INTRODUÇÃO


O estado de Mato Grosso apresenta um mosaico de biomas, sendo representado pelos biomas Amazônia (53,6%), Pantanal (6,8%) e Cerrado (39,6%) (SILVA & SATO, 2012). No setor econômico atualmente a agricultura tem se destacado, obtendo crescimento considerável principalmente na produção e na produtividade em decorrência de melhoramento genético, introdução de novas cultivares, e a prática de correção e adubação do solo (MATO GROSSO, 2011). Neste cenário o Cerrado tem sido um espaço de bastante discussão sobre uso da terra, gerando conflitos políticos, sociais e ambientais.

Tendo em vista a necessidade de sustentabilidade no sistema de produção, seja econômico, social ou ambiental, objetivou-se com esse trabalho, avaliar alguns atributos químicos relacionados à fertilidade de solos do Cerrado do estado de Mato Grosso, em áreas nativas e sob cultivo intensivo.

MATERIAL E MÉTODOS

Tratamentos e amostragens

Foi realizada amostragem de solos na região do Cerrado do estado de Mato Grosso e áreas de transição Cerrado-Amazônia, nos municípios de Alto Garça, Campo Novo dos Parecis, Campo Verde, Campos de Júlio, Lucas do Rio Verde, Nova Mutum, Rondonópolis, Sapezal, Sinop, Sorriso e Vila Bela da Santíssima Trindade (Figura 1). Em cada local de amostragem foi selecionado três ambientes de área nativa e três ambientes sob cultivo, procedendo-se a coleta de nas profundidades de 0 a 20 e 20 a 40 cm.

Figura 1 – Localização dos pontos de amostragens de amostras de solos em áreas de agricultura intensiva e vegetação nativa do estado de Mato Grosso.

Foram determinados os atributos químicos (Embrapa, 1997): pH em água; cálcio (Ca^{2+}); magnésio (Mg^{2+}) e alumínio (Al^{3+}) (extração com KCl 1 mol L^{-1}); acidez potencial (solução SMP); fósforo (P) e potássio (K^+) (Mehlich 1) e carbono orgânico (CO) pela metodologia da oxidação via úmida com $K_2Cr_2O_7$ 0,4 mol L^{-1} , sendo a matéria orgânica (MO) obtida multiplicando-se o teor de CO por 1,724. Com os dados dos atributos químicos calculou-se a capacidade de troca de cátions total ($CTC_{pH7,0}$) e efetiva (CTC_{efe}), saturação por bases (V) e saturação por alumínio (m).

Análise estatística

Os dados foram submetidos ao teste de Shapiro-Wilk para avaliação do padrão de suas distribuições. Quando estes apresentaram distribuição normal procedeu-se então ao teste T de Student para verificar o efeito dos fatores ambiente (área nativa e área sob cultivo) e profundidade (0 a 20 e 20 a 40 cm). Quando o pressuposto da normalidade não foi aceito procedeu-se então ao teste U de Mann-Whitney. Foi realizada ainda uma estatística descritiva dos dados, sendo as análises estatísticas realizadas com o uso do software XLSTAT (Addinsoft, 2013).

RESULTADOS E DISCUSSÃO

Na Tabela 1 podem ser observados os valores de significância dos testes aplicados para cada variável química quantificada. Verificou-se que os fatores estudados apresentaram efeito sobre os atributos químicos, com exceção apenas da matéria orgânica (MO) em relação aos ambientes, e do Al³+ em relação às profundidades.

Tabela 1 – Analise estatística dos fatores ambiente e profundidade para as variáveis químicas quantificadas.

Fatores -	Ambiente ⁽¹⁾	Profundidade ⁽²⁾		
	p-valor			
MO ^(a)	0,19	0,00		
pH em água ^(b) Fóforo ^(b)	0,00	0,06		
Fóforo ^(b)	0,00	0,00		
Potássio ^(b)	0,00	0,00		
Cálcio ^(b)	0,00	0,03		
Magnésio ^(b)	0,00	0,00		
Alumínio ^(b)	0,00	0,57		
Hidrogênio ^(b)	0,00	0,01		

(1)Áreas nativas e sob cultivo; ⁽²⁾0-20 e 20-40 cm. ^(a)Teste T de Student; ^(b)Test U de Mann-Whitney.

Os teores de MO foram baixos nos dois ambientes, em ambas as profundidades (**Figura 2 e 3**). Constatou-se, assim, que e o cultivo dessas

áreas, todas sob plantio direto ou cultivo mínimo, não provocou perdas de C, tendo o mesmo se mantido igual ao observado nas áreas de vegetação nativa. A conservação da MO no solo apresenta importância em diversos processos químicos, físicos e biológicos, sendo fundamental para manter o equilíbrio do mesmo e o desempenho de suas principalmente funcões. no que tange sustentabilidade do uso do solo para sistemas de produção (ROSCOE et al., 2006). Dada a importância da MO no solo não apenas para o sistema de produção, mas também como forma de sequestrar C atmosférico, e diminuir os impactos causados ao aquecimento global, tal como abordado por Carvalho et al. (2010), observa-se então que nas áreas de cultivos estudadas, uma maior atenção deve ser direcionada para aumentar o acúmulo de MO nesses solos.

Tratando-se dos demais atributos químicos, no tocante aos ambientes, destaca-se o efeito do cultivo dessas áreas sobre todos estes, sendo notável o aumento nos valores de pH em água e dos teores de P, K⁺, Ca²⁺, Mg²⁺, e diminuição dos teores de Al³⁺ e H⁺, nas camadas 0 a 20 e 20 a 40 cm (**Figuras 2 e 3**). Esses resultados ocorrem devido a práticas de correção da acidez e fertilização do solo para o cultivo dessas áreas, promovendo adição de nutrientes, imobilização do Al³⁺ e neutralização do H⁺, conforme relatado em Lopes e Guilherme (2004).

Dos atributos avaliados em relação às profundidades, o alumínio mostrou-se controverso devido não apresentar diferença (Tabela 1). Esperava-se obter valores menores na camada superficial, considerando que Al3+ fosse complexado com a MO do solo (Vance et al., 1996) que foi superior na camada superficial, como visto anteriormente.

O pH em água em relação a profundidade, apesar de não evidenciar efeito à 5% (p=0,06) de probabilidade, pode-se afirmar que este seria um borderline (**Tabela 1**), apresentando valores mais elevados na camada superficial. Considerando os valores de pH em água estipulados por Sousa & Lobato (2007) para solos do Cerrado na camada 0 a 20 cm (médio = 5,2 a 5,5; adequado = 5,6 a 6,3), os valores aqui observados (**Figura 2**) poderiam ser considerados adequados e médios para áreas de cultivo e área nativa respectivamente.

Os dados descritivos atributos dos complementares de fertilidade evidenciam o efeito do cultivo desses solos, apresentando valores mais altos de SB, CTC_{efe.} e V, além de valores menores de m, contudo não se observa diferença sobre a CTC_{pH7.0} (Tabela 2). De acordo com Canelas et al. (2000),CTC de solos tropicais fundamentalmente influenciada pela MO do solo.

Considerando que a MO não apresentou diferença em relação ao cultivo do solo nesse trabalho, conforme já foi discutido anteriormente, justifica-se assim a semelhança da ${\rm CTC_{pH7,0}}$ nos ambientes, ressaltando novamente a importância da conservação da MO do solo.

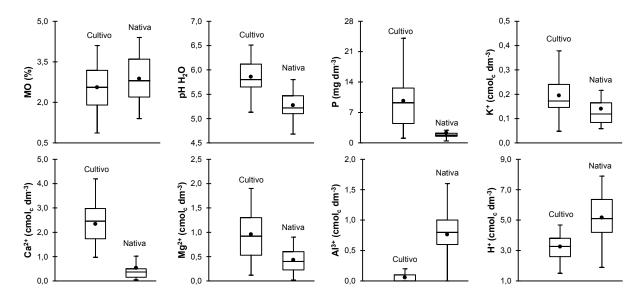
Tabela 2 – Estatística descritiva dos atributos de fertilidade

lei tilluaue.						
Dados	SB	CTC _{efe.}	CTC _{pH7,0}	M	V	
quantitativos	cmol _c dm ⁻³			%		
	Área nativa					
Mínimo	0,22	0,48	2,35	0,0	3,5	
Máximo	6,37	6,37	9,59	76,0	67,2	
1° Quartil	0,48	1,11	4,71	29,8	8,3	
Mediana	0,70	1,44	6,09	46,2	12,7	
3° Quartil	1,19	1,76	6,96	60,7	19,4	
Média	0,99	1,60	6,08	43,6	16,2	
	Área sob cultivo					
Mínimo	0,74	1,09	2,67	0,0	14,5	
Máximo	6,48	6,48	9,38	40,2	74,9	
1° Quartil	1,76	1,79	5,11	0,0	33,4	
Mediana	2,52	2,67	6,02	0,0	44,0	
3° Quartil	3,50	3,56	7,29	7,9	56,3	
Média	2,75	2,88	6,15	6,5	43,6	

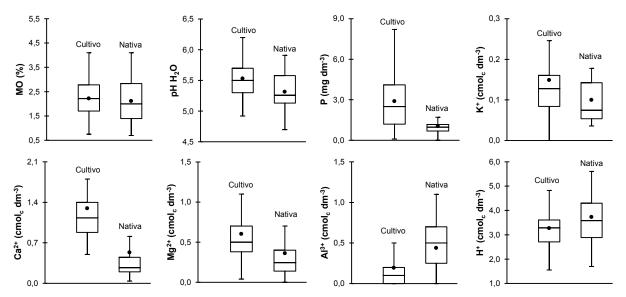
CONCLUSÕES

O cultivo de solos do Cerrado de Mato Grosso promoveu aumento nos valores de pH em água e nos teores de P, K^+ , Ca^{2^+} , Mg^{2^+} , além de diminuição dos teores de Al^{3^+} e H^+ , resultando em valores mais altos de SB, CTC_{efe} , V, e valores mais baixos de m, sem alterar a $CTC_{pH7,0}$.

Não houve alteração na MO do solo em função do cultivo dessas áreas.


Com exceção do Al³⁺ e do H⁺, valores mais elevados de atributos químicos foram verificados na camada superficial.

AGRADECIMENTOS


Ao Concelho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) através da Rede AgroMetais - Rede de pesquisa em ETs e sustentabilidade agrícola no Brasil - pelo suporte financeiro ao projeto de pesquisa.

REFERÊNCIAS

- ADDINSOFT. 2013. **XLSTAT-Pro, Core Statistical Software**. Disponível em: http://www.xlstat.com. Acesso em: .26/02/2013.
- CANELLAS, L. P.; BERNER, P. G.; SILVA, S. G. et al. Frações da matéria orgânica em seis solos de uma toposseqüência no Estado do Rio de Janeiro. Pesquisa Agropecuária Brasileira, v. 35, n. 1, p. 133-143, 2000.
- CARVALHO, J. L. N.; AVANZI, J. C.; SILVA, M. L. N.; et al. Potencial de sequestro de carbono em diferentes biomas do Brasil. Revista. Brasileira de Ciência do Solo, vol.34, n.2, p. 277-290. 2010.
- EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Manual de métodos de análises de solo. 2. ed. Rio de Janeiro: Embrapa-CNPS, 1997. p. 212.
- MATO GROSSO. Mato Grosso em números: Edição 2010. 2011. Secretaria do Estado de Planejamento e Coordenação Geral – SEPLAN. Disponível em: < http://www.seplan.mt.gov.br/html/>. Acesso em: 21 de março de 2013.
- LOPES, A.S.; GUILHERME, L.R.G. 2007. Fertilidade do solo e produtividade agrícola. In: Novais et al. (Eds). *Fertilidade do solo*. Sociedade Brasileira de Ciência do Solo. Viçosa-MG, p. 1-64.
- ROSCOE, R.; BODDEY, R. M. & SALTON, J.C. Sistemas de manejo e matéria orgânica do solo. In: ROSCOE, R.; MERCANTE, F.M. & SALTON, J.C., orgs. Dinâmica da matéria orgânica do solo em sistemas conservacionistas: Modelagem matemática e métodos auxiliares. Dourados, Embrapa Agropecuária Oeste, 2006. p.17-41.
- SILVA, M. J. & SATO, M. T. Territórios em tensão: o mapeamento dos conflitos socioambientais do Estado de Mato Grosso Brasil. Ambiente e sociedade, v.15, n.1, p. 1-22. 2012.
- SOUSA, D.M.G. & LOBATO, E., eds. Cerrado: correção do solo e adubação. 2.ed. Planaltina, Embrapa Cerrados, 2004. 416 p.
- VANCE, G.F.; STEVENSON, F.J.; SIKORA, F.J. Environmental chemistry of aluminum-organic complexes. In: SPOSITO, G. (Ed.). The environmental chemistry of aluminum. 2.ed. Flórida: Lewis Publishers, 1996. p.169-220.

Figura 2 – *Boxplots* com os percentis 0, 25, 50, 75, 100 e médias dos atributos químicos no solo de áreas nativas e sob cultivo na camada 0-20 cm.

Figura 3 – *Boxplots* com os percentis 0, 25, 50, 75, 100 e médias dos atributos químicos no solo de áreas nativas e sob cultivo na camada 20-40 cm.