Efeito da compactação da colheita florestal mecanizada sobre a aeração e a condutividade hidráulica em Cambissolo Húmico (1)

<u>Maria Izabel Warmling</u> ⁽²⁾ Adriano da Costa ⁽³⁾; Jackson Adriano Albuquerque ⁽⁴⁾; Bruno Afonso Magro ⁽⁵⁾; André da Costa ⁽⁶⁾; Rodrigo Luciano Viera ⁽⁷⁾.

(1) Trabalho executado com apoio da Klabin S/A, do CNPq e da CAPES.

RESUMO: O setor da colheita florestal teve grande modernização, aumentando os riscos compactação dos solos florestais. Objetivou-se avaliar os efeitos da colheita florestal mecanizada de Pinus sobre atributos físicos relacionados à aeração e a condutividade hidráulica de um solo de altitude da região sul do Brasil. A área experimental situouse em um reflorestamento de Pinus taeda na terceira rotação em Otacílio Costa-SC, avaliando-se a área pré e pós-colheita submetidas ao médio e alto tráfego; áreas de resíduo florestal ou estaleiro. Foram coletadas amostras com estrutura preservada nas camadas de 0-10, 10 20, 20-30, 30-40 e 40-60 cm, para determinação do volume de bioporos, capacidade de aeração e condutividade hidráulica do solo saturado. Conclui se que o tráfego de máquinas na colheita florestal de Pinus reduz o volume de bioporos, a capacidade de aeração condutividade hidráulica do solo saturado nas camadas superficiais em solos de altitude do Sul do Brasil.

Termos de indexação: bioporos, capacidade de aeração, condutividade hidráulica do solo saturado.

INTRODUÇÃO

Em 2010, as áreas com florestas cultivadas no Brasil totalizaram 6.510.693 ha, sendo 73 % correspondente à área de plantios de *Eucalipto* e 27 % de plantios com *Pinus*. No Estado Santa Catarina existe uma área plantada de 647.992 ha, que corresponde a 10 % da área plantada no país, distribuídas em 102.399 ha de *Eucalipto* e 545.592 ha de *Pinus* (ABRAF, 2011).

O fenômeno que acontece quando passa um equipamento fazendo pressão exógena induz o solo a uma resistência. Como, segundo a teoria das leis de Newton, todo força de ação corresponde a uma força de reação, então quando um pneu faz pressão, o solo tem que fazer uma pressão igual contra o pneu, e quando a pressão do pneu for maior do que o solo, o solo sofrerá uma deformação até um novo equilíbrio seja alcançado (MACHADO,

2008). Essa deformação pode alterar o fluxo de ar e água no solo, geralmente, avaliados pela medição de alguns atributos físicos do solo, como o volume de bioporos, a capacidade de aeração e a condutividade hidráulica do solo saturado.

Os objetivos desse trabalho foram avaliar os efeitos da colheita florestal mecanizada de Pinus sobre alguns atributos físicos relacionados a aeração e a condutividade hidráulica de um solo de altitude da região sul do Brasil.

MATÉRIAL E MÉTODOS

O estudo foi realizado em uma fazenda da empresa Klabin S/A, localizada no município de Otacílio Costa-SC, com latitude de 27°33'36" (S), longitude 49°53'59" (W) e altitude de 876 metros. Estava reflorestada com *Pinus taeda sp*, com 18 anos de idade, na terceira rotação.

O município possui clima mesotérmico úmido com verão ameno (Cfb), segundo a classificação de Köppen. As chuvas são bem distribuídas durante o ano, com precipitação média anual de 1.600 mm e temperatura média anual de 16 °C (Santa Catarina, 2011). A classe de solo é Cambissolo Húmico. Os teores de argila, silte e areia são respectivamente de 310, 460 e 240 g kg⁻¹, e de matéria orgânica de 92 g kg⁻¹ na camada 0-10 cm e 38 g kg⁻¹ na camada de 40-60 cm.

O sistema de colheita usado pela empresa é de toras longas (tree-length), onde o "Feller Buncher" realiza a derrubada e o agrupamento das árvores em feixes, preparando-as para que o Skidder efetue a operação de arraste das árvores até próximo da estrada, onde as árvores ficam armazenadas até serem desgalhadas, traçadas e organizadas em pilhas de toras pelo "Harvest", que posteriormente serão carregadas nos caminhões de transporte de madeira.

Os tratamentos foram: área testemunha (controle); médio tráfego; alto tráfego; resíduo; e estaleiro. A testemunha foi amostrada antes da colheita mecanizada; o médio tráfego foi considerado como área onde não se percebia

⁽²⁾ Aluna do curso de Agronomia, Universidade do Estado de Santa Catarina (UDESC); Lages; Santa Catarina; bel warmling@hotmail.com (3) Mestrando do curso de Manejo do Solo, UDESC (4) Professor da UDESC – pesquisador do CNPq. (5) Pesquisador da empresa Klabin S/A. (6) Pós-doutorando do PPGEF; Universidade Federal de Santa Maria. (7) Doutor em Manejo do Solo pela UDESC.

revolvimento do solo pela passagem dos pneus das máquinas (Figura 1); o alto tráfego como área com revolvimento do solo perceptível ocasionado pela passagem dos pneus das máquinas; o resíduo foi considerado como área com grande quantidade de resíduos florestais provenientes do desgalhamento e traçamento das árvores cortadas; e o estaleiro foi considerado como área onde as toras após serem desgalhadas e traçadas foram organizadas em pilhas até a etapa de carregamento para o transporte até a empresa.

Em cada bloco foram abertas quatro trincheiras até 60 cm de profundidade, para coletar amostras de solo com estrutura preservada com cilindros metálicos (70,7 cm³), nas camadas de 0-10, 10-20, 20-30, 30-40, e 40-60 cm, para determinação de alguns atributos físicos. As amostras foram saturadas, equilibradas na tensão de 1 e 10 kPa em coluna de areia (Reinert & Reichert, 2006), determinada a condutividade hidráulica e secas em estufa a 105 °C. Com estes dados foi calculado o volume de bioporos ($\theta_{0\text{kPa}}$ - $\theta_{1\text{kPa}}$), a capacidade de aeração ($\theta_{0\text{kPa}}$ - $\theta_{1\text{okPa}}$), e a condutividade hidráulica do solo saturado (KHS) em carga variável, conforme Embrapa (1997).

Os dados foram submetidos ao teste de normalidade, utilizando a transformação de Box-Cox quando se observou distribuição não normal dos dados. Posteriormente a transformação dos dados, procedeu-se a análise da variância utilizando um modelo misto, e quando esta foi significativa, as médias foram comparadas pelo teste da diferença mínima significativa de Fisher (DMS) a 5 % probabilidade.

RESULTADOS E DISCUSSÃO

O volume de bioporos reduziu até os 30 cm de profundidade na área de Estaleiro em comparação a área testemunha, até 40 cm nas áreas de médio tráfego e de resíduo e até os 60 cm nas áreas de alto tráfego (Tabela 1). Contudo, o efeito da colheita florestal, nas áreas de médio e alto trafego, estaleiro e resíduo não diferiram entre si entre para a maioria das camadas avaliadas, ou seja, o efeito da compactação durante o processo de colheita florestal do Pinus foi negativo sobre a redução do teor de bioporos em toda a área de colheita, independentemente do tipo de máquina que transitou na área, na intensidade do tráfego e da presença de resíduos sobre o solo.

Para a capacidade de aeração, observou-se redução até os 30 cm de profundidade na área de médio tráfego e no estaleiro, em comparação a área testemunha, até 40 cm nas áreas de resíduo e até

os 60 cm nas áreas de alto tráfego (Tabela 1). Entretanto, o efeito da colheita florestal, nas áreas de médio e alto tráfego, estaleiro e resíduo não diferiram entre si para as camadas avaliadas, ou seja, semelhantemente ao observado para o volume de bioporos, o efeito da compactação durante o processo de colheita florestal do Pinus foi negativo sobre a redução da capacidade de aeração em toda a área de colheita florestal. Também é importante destacar que, embora a capacidade de aeração tenha reduzido pela metade após a colheita florestal, seus valores permaneceram acima do nível crítico de 0,10 cm³ cm⁻³ (Xu et al., 1992) até 60 cm de profundidade em todos os tratamentos.

A condutividade hidráulica do solo saturado reduziu em todos os tratamentos após a colheita florestal, em comparação a área testemunha (Tabela 1). Entretanto, devido ao elevado coeficiente de variação deste atributo físico do solo, apenas em algumas camadas diferiram estatisticamente entre os tratamentos em comparação a testemunha, sendo observadas maiores reduções da KHS nas áreas de médio tráfego e alto tráfego na camada de 0 a 10 cm, nas áreas de alto tráfego e resíduo nas camadas de 10 a 20 cm e 30 a 40 cm, e em todas as áreas de pós-colheita na camada de 20 a 30 cm. Entre os 40 a 60 cm, nenhum dos tratamentos diferiu. Quanto a magnitude na modificação dos valores de KHS, a área testemunha teve uma KHS cerca de 20 vezes maior que naquele de médio tráfego, 8 vezes que a do alto tráfego, e próximo ao dobro em comparação a área de resíduos e ao estaleiro na camada de 0 a 10 cm. Nas demais camadas, também foram observadas reduções de grande magnitude.

A passagem de máquinas pesadas no solo provoca a diminuição dos poros de maior diâmetro, sendo esse responsável pela condução de gases no solo e pela infiltração da água para camadas inferiores; com a redução do volume de bioporos e da capacidade de aeração refletiu em redução na condutividade hidráulica saturada. Este efeito negativo da colheita florestal na redução da KHS foi observado neste estudo, assim como, a relação entre os efeitos da redução do volume de bioporos e da capacidade de aeração no solo sobre sua condutividade hidráulica saturada, coeficientes de correlação de postos de Spearman entre a KHS com o volume de bioporos e com a capacidade de campo foram de 0,68 e 0,59. respectivamente. Cechin (2007) também observou uma redução do fluxo de água no solo saturado após a colheita florestal em dois Argissolos do Estado do Rio Grande do Sul.

CONCLUSÕES

O tráfego de máquinas na colheita florestal de Pinus reduz o volume de bioporos, a capacidade de aeração e a condutividade hidráulica do solo saturado nas camadas superficiais, principalmente até os 30 cm de profundidade, em solos de altitude da região Sul do Brasil, dificultando o fluxo de ar e água no solo e aumentando os riscos de erosão por escoamento superficial.

AGRADECIMENTOS

A CAPES, CNPq e a empresa Klabin S/A pelo apoio para o desenvolvimento do projeto.

REFERÊNCIAS

ABRAF. Anuário estatístico da Associação Brasileira de Produtores de Florestas Plantadas 2011, ano base 2010. Brasília, DF, 2011. 130p.

CECHIN, N. F. Compactação de dois Argissolos na colheita florestal de *Pinus taeda* L. Santa Maria, RS, tese, 2007. 136p.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. 2 ed. Rio de Janeiro, 1997. 212p.

MACHADO, C. C. Colheita Florestal. 2 ed. Viçosa, MG. Ed.UFV; 2008. 501p.

REINERT, D.J & REICHERT, J. M. Coluna de areia para medir a retenção de água no solo: protótipos e teste. Ciência Rural, 36: 1931-1935, 2006.

SANTA CATARINA. Governo do Estado de Santa Catarina: Municípios de Santa Catarina, Otacílio Costa. Disponível em: http://www.sc.gov.br/portalturismo/Default.asp?

CodMunicipio = 285&Pag=1>. Acesso em 19 out. 2011.

XU, X.; NIEBER, J.L. & GUPTA, S.C. Compaction effect on the gas diffusion coefficient in soils. Soil Sci. Soc. Am. J., 56:1743-1750,1992.

Figura 1 – Fotos dos tratamentos após a colheita florestal: A - Alto tráfego; B - Médio tráfego; C - Resíduo e D - Estaleiro.

XXXIV congresso brasileiro de ciência do solo

28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

Tabela 1 – Volume de bioporos, capacidade de aeração e condutividade hidráulica saturada de um Cambissolo Húmico com reflorestamento de *Pinus taeda* após colheita mecanizada ⁽¹⁾.

Camada												
(cm)	Testemunha	Médio tr	áfego	Alto	tráfeg	0	Est	taleir	0	Re	síduc)
Bioporo (cm³ cm⁻³)												
0 a 10	0,13 A ab	0,07	В а	0,07	В	а	0,08	В	bc	0,09	В	ab
10 a 20	0,11 A ab	0,07	В а	0,08	В	а	0,07	В	С	0,08	В	ab
20 a 30	0,13 A a	0,08	В а	0,08	В	а	0,09	В	ab	0,10	В	а
30 a 40	0,11 A ab	0,08 E	BC a	0,09	ABC	а	0,10	AB	а	0,07	С	b
40 a 60	0,11 A b	0,09 A	В а	0,08	В	а	0,08	AB	abc	0,09	AB	ab
Capacidade de Aeração (cm³ cm ⁻³)												
0 a 10	0,27 A a		B b	0,11	В	b	0,12	В	b	0,12	В	b
10 a 20	0,19 A ab	0,12	B ab	0,12	В	ab	0,12	В	b	0,11	В	b
20 a 30	0,22 A a	0,13	В а	0,13	В	ab	0,15	В	ab	0,15	В	а
30 a 40	0,18 A ab	0,14 A	В а	0,14	В	а	0,17	AB	а	0,13	В	ab
40 a 60	0,17 A b	0,14 A	AB ab	0,11	В	ab	0,15	AB	а	0,13	AB	ab
Condutividade Hidráulica Saturada (mm h ⁻¹)												
0 a 10	303 A a	15	C b	38	ВС	ab	154	AB	а	147	Α	а
10 a 20	135 A ab	53 A	AB ab	19	В	b	80	AB	а	28	В	b
20 a 30	173 A ab	48	B ab	29	В	ab	92	В	а	18	В	b
30 a 40	181 A a	64 A	\ В а	82	В	ab	100	AB	а	29	В	b
40 a 60	110 A b	92	A a	62	Α	а	42	Α	а	78	Α	ab

⁽¹⁾ Médias seguidas da mesma letra, maiúscula na linha, e minúscula na coluna, não diferem significativamente entre si pelo teste de Fisher (DMS) a nível de 5% de probabilidade.