Influência de culturas antecessoras na disponibilidade de nitrogênio do solo para a cultura do algodão⁽¹⁾.

<u>Laene Nepomuceno Almeida Galhardo</u>⁽²⁾; Maria da Conceição Santana Carvalho⁽³⁾; Alexandre Cunha de Barcellos Ferreira⁽⁴⁾; Letícia Nunes dos Santos⁽²⁾.

(1) Trabalho executado com recursos do Fundo de Incentivo ao Algodão de Goiás – FIALGO e da EMPRAPA.
(2) Estudante de Agronomia da Universidade Uni-Anhanguera e estagiária da Embrapa Arroz e Feijão, bolsista da EMBRAPA; (3) Pesquisadora Embrapa Arroz e Feijão, Rodovia GO-462, km 01, Zona Rural, C.P. 179, CEP: 75375-000, Santo Antônio de Goiás, GO, e-mail: maria.carvalho@embrapa.br; (4) Pesquisador da Embrapa Algodão, Núcleo de P&D do Cerrado, C.P.179, CEP: 75375-000, Santo Antônio de Goiás, GO.

RESUMO: Um dos fatores importantes a ser considerado no manejo da adubação nitrogenada é a cultura antecessora. O objetivo desse trabalho, conduzido em Santa Helena de Goiás, foi medir a antecessoras influência de culturas disponibilidade de nitrogênio (N) inorgânico no solo na resposta do algodoeiro à adubação nitrogenada. O experimento foi instalado em parcelas subdivididas com quatro repetições. Nas parcelas foram cultivadas as culturas antecessoras milho, soja, algodão e Brachiaria decumbens; e nas subparcelas foram aplicadas cinco doses de nitrogênio (0, 40, 80, 120 e 160 kg ha-1 de N) no algodoeiro cultivado em sucessão. O algodoeiro em sucessão à soja e ao algodão necessita de menor quantidade de fertilizante nitrogenado, comparação com a sucessão à braquiária e ao milho. Durante o ciclo do algodoeiro a presença de resíduos de soja favorece a mineralização líquida do nitrogênio do solo, tornando-o disponível nos primeiros estádios de desenvolvimento da planta. Os resíduos de B. decumbens favorecem a imobilização do N na biomassa microbiana do solo.

Termos de indexação: Gossypium hirsutum; sucessão de culturas, biomassa microbiana do solo.

INTRODUÇÃO

A recomendação de adubação com nitrogênio em função da análise de solo ou análise foliar é uma tarefa muito difícil devido à dinâmica desse nutriente no solo, pois mais de 95% do N do solo encontra-se na forma orgânica, enquanto apenas uma pequena parte está disponível nas formas de NH₄⁺ e NO₃, que são absorvidas pelas plantas (Stevenson, 1986). Por outro lado, resultados de experimentos de campo com o algodoeiro tem demonstrado que é possível relacionar a resposta à aplicação de N com a intensidade do uso da área e com o potencial de produtividade (Carvalho et al., 2011).

O entendimento dos mecanismos biogeoquímicos que mantêm a fertilidade do solo são extremamente importantes para implementar o seu manejo. As taxas líquidas de mineralização e nitrificação do N do solo são importantes indicadores da sua fertilidade, pois refletem a capacidade do solo em

fornecer este nutriente para as plantas. Sabe-se que na presença de resíduos com baixa concentração de N existe potencial de imobilização de N do solo, enquanto os resíduos com alta concentração de N promovem a mineralização do N no solo. Assim, quando o algodoeiro é cultivado no sistema plantio direto, especialmente em sucessão a gramíneas, a imobilização de nitrogênio pela biomassa microbiana pode ser um dos fatores responsáveis pela maior resposta à adubação com esse nutriente. Já no caso de algodão cultivado após a soja, é possível que a adubação nitrogenada possa ser reduzida (Ferreira & Carvalho, 2005).

Os objetivos desse trabalho foram: 1) verificar se ocorre resposta diferenciada do algodoeiro à aplicação de doses de nitrogênio, em função da cultura antecessora no sistema de produção; e 2) medir a variação de nitrogênio inorgânico no solo e sua relação com o nitrogênio da biomassa microbiana, nos primeiros estádios de desenvolvimento do algodoeiro.

MATERIAL E MÉTODOS

O experimento foi instalado na área experimental da Fundação GO/Embrapa, em Santa Helena de Goiás, em esquema de faixas em parcelas subdivididas. O solo é classificado como Latossolo vermelho, com as seguintes características físicas e químicas, na camada 0-20 cm, antes da instalação do experimento: teor de argila igual a 450; pH (CaCl₂)=5,4; P=12 mg dm⁻³, MO=4,7 g kg⁻¹; teores de K⁺, Ca, Mg, H+Al e CTC (em cmol_c dm⁻³) iguais a 0,32, 5,5, 1,2, 4,7 e 11,7, respectivamente.

As culturas de algodão, braquiária, milho e soja, cultivadas na safra anterior e dispostas em faixas, formaram as parcelas, enquanto cinco doses de nitrogênio (0, 40, 80, 120 e 160 kg ha⁻¹ de N), aplicadas em cobertura no algodoeiro cultivado na safra subsequente, formaram as subparcelas, totalizando vinte tratamentos. O delineamento experimental foi o de blocos ao acaso com quatro repetições. Cada subparcela foi formada por seis linhas de algodão de 5m e espaçamento 0,90m entre linhas, utilizando-se as quatro linhas centrais como área útil, descartando-se 0,5m extremidades.

A adubação de plantio do algodão foi com 450 kg ha da formulação 4-30-16 + 0,5% Zn + 0,45% de B; portanto todas as parcelas receberam o equivalente a 18 kg ha de N no sulco de semeadura. As doses de nitrogênio em cobertura, correspondentes aos tratamentos, foram parceladas em duas partes iguais entre os estádios B_1 (aparecimento do primeiro botão floral) e F_1 (primeira flor), utilizandose uréia. Junto com nitrogênio foram aplicados também 40 kg ha de K_2O , na forma de cloreto de potássio.

Antes de cada adubação de cobertura, foram realizadas amostragens de solo na camada 0-20 cm para análise de N inorgânico (nitrato e amônio). Os teores de N inorgânico (N-NH₄⁺ e N-NO₃⁻) foram determinados pelo sistema automático de injeção de fluxo contínuo, após extração de 10g de amostras frescas com 100 mL de KCl 2 *mol L*⁻¹. Análises de biomassa microbiana C e N foram realizadas nas amostras coletadas antes da primeira cobertura (estádio B1), de acordo com Brookes et al. (1985) e Vance et al. (1987). No período de pleno florescimento, foram coletadas amostras de folha para determinação do teor de nitrogênio.

RESULTADOS E DISCUSSÃO

O melhor desempenho do algodoeiro foi quando cultivado em sucessão à braquiária (Tabela 1), cujas produtividades de algodão em caroço e em pluma formam, respectivamente, 28% e 31% superior à sucessão algodão-algodão. As plantas de algodão em sucessão à braquiária cresceram menos e acumularam menos N em suas folhas, porém houve maior retenção de capulhos e maior rendimento de fibra, comparado com as outras culturas antecessoras. Esses resultados sugerem que houve melhor distribuição dos fotoassimilados para a produção de fibras, em detrimento do crescimento vegetativo. O algodoeiro cultivado após a soja apresentou o segundo melhor desempenho produtivo e, além disso, as plantas desenvolveramse rapidamente após a emergência, provavelmente devido à maior disponibilidade de nitrogênio, e atingiram a maior altura final (Tabela 1).

A produtividade do algodoeiro em resposta às doses de N em cobertura dependeu da cultura antecessora (Tabela 1), embora a produtividade média do experimento tenha sido baixa devido a um período longo de veranico durante o florescimento. Não houve efeito significativo da adubação nitrogenada de cobertura quando as culturas antecessoras foram algodão e soja, o que deve estar associado aos efeitos residuais dessas culturas, que são ricos em proteínas, sobretudo a soja. Quando as culturas antecessoras foram braquiária e milho, houve resposta à adubação nitrogenada e, com o ajuste das equações quadráticas, as doses de N em cobertura que possibilitaram as máximas produtividades de

algodão em caroço foram estimadas em 94 kg ha⁻¹ para braquiária e em 68 kg ha⁻¹, para a cultura do milho.

A maior resposta do algodoeiro à adubação nitrogenada tendo a braquiária como antecessora pode ser explicada pela menor disponibilidade de nitrogênio do solo devido, provavelmente, à sua imobilização por mais tempo, tanto na biomassa da braquiária como pelos microrganismos do solo. Os maiores valores de biomassa microbiana C e N do solo (Figura 1) foram medidos na área com palha de braquiária. Tais resultados sugerem elevada imobilização Ν até aquele estádio de desenvolvimento do algodoeiro.

A taxa líquida de mineralização de N medida no estádio B1 do algodoeiro foi positiva apenas quando a soja foi a cultura antecessora (Tabela 2), sugerindo que o N foi disponibilizado mais cedo, comparado com as demais antecessoras. Já no estádio F_1 , as taxas líquidas de mineralização de N do solo foram positivas, independente da cultura antecessora, indicando que o processo de mineralização foi maior que a imobilização.

Como o algodoeiro cultivado após a soja não respondeu em produtividade às doses de N, mesmo havendo aumento do teor desse nutriente na folha (Tabela 1), pode-se inferir que a quantidade de N mineralizada dos resíduos dessa cultura, independente da velocidade de decomposição, foi suficiente para suprir a demanda das plantas, no patamar de produção alcançado no experimento.

CONCLUSOES

O algodoeiro em sucessão à soja e ao próprio algodão necessita de menor quantidade de fertilizante nitrogenado, em comparação com a sucessão à braquiária e ao milho.

Durante o ciclo do algodoeiro a presença de resíduos de soja favorece a mineralização líquida do nitrogênio do solo, tornando-o disponível nos primeiros estádios de desenvolvimento da planta. Os resíduos de *B. decumbens* favorecem a imobilização do N na biomassa microbiana do solo e demandam maior dose de N na adubação.

REFERÊNCIAS

BROOKES, P.C.; LANDMAN, A.; PRUDEN, B.; JENKINSON, D.S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. **Soil Biology and Biochemistry**, v.17, p.837-842, 1985.

CARVALHO, M. C. S.; FERREIRA G.B.; STAUT, L.A. Nutrição, calagem e adubação. In: FREIRE, E.C. (Org.). Algodão no Cerrado do Brasil. 2 ed. Aparecida de Goiânia: Associação dos Produtores de Algodão, Mundial Gráfica, 2011. p. 677-752.

FERREIRA, G.B; CARVALHO, M.C.S. **Adubação do Algodoeiro no Cerrado:** com resultados de Pesquisa em Goiás e Bahia. Campina Grande: Embrapa Algodão, 2005. 71p. (Embrapa Algodão. Documentos, 138).

MALAVOLTA, E.; VITTI, G.C.; OLIVEIRA, S.A. **Avaliação do estado nutricional das plantas:** princípios e aplicaçõe**s.** 2.ed. Piracicaba: POTAFOS, 1997. 319p.

STEVENSON, F.J. **Cycles of soil:** carbon, nitrogen, phosphorus, sulfur, micronutrients. New York: J. Wiley, 1986. 380p.

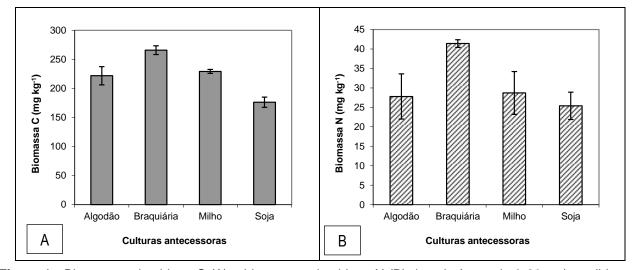

VANCE, E.D.; BROOKES, P.C.; JENKINSON, D.S. An extraction method for measuring soil microbial biomass C. **Soil Biology and Biochemistry**, v.19, p.703-107, 1987.

Tabela 1 - Produtividade de algodão em caroço (A.caroço) e em pluma (Pluma), rendimento de fibra (Fibra), altura de plantas, peso médio de um capulho (Pcap), número médio de capulhos por planta (Ncap) e teor de N na folha do algodoeiro, em função de culturas antecessoras e doses de nitrogênio.

Cultura antecessora/	Altura	Pcap	Ncap	A.caroço	Fibra	Pluma	Teor de N			
Dose de N (kg/ha)	(cm)	(g)		(kg ha ⁻¹)	(%)	(kg ha ⁻¹)	g kg⁻¹			
Efeito geral de culturas antecessoras 1/										
Algodão	130,1 c	5,1 ab	9,0 ab	1.586 c	37,9 b	602 bc	40,6 a			
Braquiária	121,1 d	5,1 ab	10,5 a	2.034 a	38,8 a	788 a	37,3 b			
Milho	136,5 b	4,9 b	7,9 b	1.588 c	38,0 b	583 c	40,3 a			
Soja	144,3 a	5,3 a	8,2 b	1.736 b	37,5 b	645 b	40,3 a			
Culturas antecessoras vs. doses de N										
Algodão										
0	128,5	5,1	6,7	1.589	38,6	614	38,0			
40	131,4	5,3	9,6	1.528	38,0	580	40,6			
80	129,4	5,3	10,1	1.560	37,6	587	41,5			
120	129,3	4,9	9,5	1.643	37,3	613	41,6			
160	132,1	4,9	9,2	1.610	38,1	615	41,5			
Análise de regressão	ns	ns	ns	ns	ns	ns	EQ < 0,01			
Braquiária										
0	116,6	5,1	8,3	1.768	39,7	702	35,0			
40	121,8	4,9	10,7	2.080	39,0	811	36,7			
80	123,9	5,4	12,1	2.228	38,3	855	37,6			
120	120,3	5,2	9,7	2.072	38,7	803	39,0			
160	123,2	5,1	11,7	2.022	38,2	771	38,0			
Análise de regressão	EQ < 0,05	ns	ns	EQ < 0,01	EL < 0.07	EQ < 0,05	EL < 0.05			
Milho										
0	134,8	4,9	7,3	1.533	37,9	583	38,4			
40	137,3	5,0	7,6	1.703	38,7	610	39,4			
80	136,1	5,1	7,8	1.623	37,2	605	41,2			
120	134,1	4,9	8,3	1.564	37,8	544	40,8			
160	140,1	4,9	8,4	1.513	38,1	576	41,9			
Análise de regressão	ns	ns	ns	EQ < 0,10	ns	EQ < 0,10	EQ < 0,01			
Soja										
0	140,6	5,3	7,6	1.739	38,5	667	37,7			
40	145,4	5,4	8,5	1.808	37,4	674	40,6			
80	146,3	5,2	9,6	1.821	37,0	675	42,6			
120	143,7	5,1	7,6	1.623	36,7	565	39,6			
160	145,5	5,4	7,8	1.692	37,9	643	40,8			
Análise de regressão	EQ < 0,10	ns	ns	ns	ns	ns	EQ < 0,05			
C.V. (%)	3,76	5,36	17,35	11,2	2,78	12,10	2,92			

Tabela 2 - Teor de nitrogênio mineral (N-NO₃ e N-NH₄) e taxas líquidas de mineralização e nitrificação do nitrogênio do solo (camada 0-20 cm) com seus respectivos erros padrão da média, em função das culturas antecessoras (tratamento sem adubação nitrogenada).

Época/ Cultura Antecessora	N-NO ₃	N-NH ₄ ⁺	N-(NO ₃ + NH ₄ +)	Taxa de mineralização	Taxa de nitrificação					
		mg kg solo se	co ⁻¹	mg kg solo ⁻¹ dia ⁻¹						
Antes da 1ª cobertura (fase B₁)										
Algodão	6.0 ± 0.72	3.5 ± 0.57	9.5 ± 1.26	-0.42 ± 0.26	-0.04 ± 0.19					
Braquiária	$3,7 \pm 0,62$	$5,0 \pm 0,73$	8,6 ± 1,12	-0.30 ± 0.12	0.00 ± 0.09					
Milho	$4,5 \pm 0,60$	$5,4 \pm 0,83$	$9,9 \pm 1,01$	$-0,49 \pm 0,21$	-0.02 ± 0.10					
Soja	$2,6 \pm 0,18$	3.8 ± 0.45	$6,5 \pm 0,53$	$0,11 \pm 0,53$	$0,17 \pm 0,09$					
Antes da 2ª cobertura (fase F ₁)										
Algodão	2.5 ± 0.44	5.7 ± 0.09	$8,2 \pm 0,42$	0.06 ± 0.04	0.18 ± 0.06					
Braquiária	$2,0 \pm 0,12$	$3,7 \pm 0,16$	5.7 ± 0.27	$0,62 \pm 0,09$	0.36 ± 0.02					
Milho	$2,2 \pm 0,13$	$3,0 \pm 0,19$	$5,2 \pm 0,07$	$1,03 \pm 0,11$	$0,40 \pm 0,02$					
Soja	$2,1 \pm 0,24$	$4,7 \pm 0.86$	6,7 ± 1,10	$0,10 \pm 0,10$	$0,22 \pm 0,11$					

Figura 1 - Biomassa microbiana C (A) e biomassa microbiana N (B) do solo (camada 0-20 cm) medidas no tratamento controle (sem aplicação de N em cobertura) no estádio B₁ da cultura do algodoeiro, em função das culturas antecessoras. As barras verticais correspondem aos valores do erro padrão da média