Espectroscopia de reflectância Mid-IR na predição de atributos do solo para fins de levantamento⁽¹⁾.

<u>Fabrício da Silva Terra</u>⁽²⁾; José Alexandre Melo Demattê⁽³⁾; Raphael Viscarra Rossel⁽⁴⁾; Marston Héracles Domingues Franceschini⁽⁵⁾.

(1) Trabalho executado com recursos de auxílio financeiro do projeto CNPq N° 477298/2007-9.

RESUMO: A expansão da produção agrícola brasileira seguida da constante preocupação ambiental demanda a adoção de novas tecnologias eficazes no monitoramento e avaliação dos solos em larga escala. A espectroscopia de reflectância atende tais interesses, porém ainda são necessários testes em solos brasileiros. Sendo assim, o objetivo do trabalho foi quantificar atributos físico-químicos utilizando dados de reflectância infravermelha de 4000 a 400 cm⁻¹. Utilizaram-se 1259 amostras, distribuídas entre SP, GO, MG e MS. Foram realizadas análises de granulometria e química para levantamento, incluso micronutrientes. Dados de reflectância foram obtidos pelo sensor Nicolet 6700 FT-IR. Como algoritmos de regressão multivariada foram testados: PLSR, SVM e BT. O desempenho das predições foi obtido pelo R2, RMSE e índice RPD. Os modelos apresentaram excelente desempenho ($R^2 \ge 0.76$ e $\dot{R}PD \ge 2.03$) para: areia, argila, Al³⁺, H⁺+Al³⁺, CTC, V% e TiO₂. As predições foram razoáveis (R² \geq 0,52 e RPD \geq 1,43) para: silte, CO, Ca, Mg, SB, m%, atividade de argila, pH (em H₂O, KCl e CaCl₂), óxidos (Si, Fe, Al e Mn), índices Ki e Kr, Cu e Mg (micronutrientes). Fósforo, potássio e demais micronutrientes (Zn, Fe e B) não foram quantificados de forma confiável (R² ≤ 0.36 e RPD ≤ 1,26). Dados espectrais sem processamento proporcionaram maior qualidade nas predições sendo o SVM o algoritmo de melhor desempenho. A espectroscopia de reflectância Mid-IR apresenta-se como uma tecnologia de alto potencial na predição de atributos para fins de levantamento.

Termos de indexação: sensoriamento próximo, pedometria, modelagem multivariada.

INTRODUÇÃO

De nada adiantam os esforços para o desenvolvimento de práticas agrícolas sustentáveis sem o devido conhecimento do solo, elemento fundamental nesta relação de sustentabilidade. A obtenção de informações a cerca dos atributos dos solos e suas distribuições no ambiente, inevitavelmente, passa por inúmeros trabalhos de levantamento, o que, por consequência, acarreta em

um número elevado de amostras coletadas e análises laboratoriais realizadas (Demattê et al., 2004), principalmente considerando o Brasil com uma área cultivada de 65.338.804 ha. Sendo assim, surge a necessidade da adoção de novas tecnologias eficazes no monitoramento e avaliação em larga escala do solo de forma que esses processos sejam otimizados.

Nesse sentido, o sensoriamento próximo por espectroscopia de reflectância atende tais expectativas por ser uma técnica rápida, barata, uma vez tendo adquirido o equipamento, e limpa, pois não usa reagente nem gera resíduo (Viscarra et al., 2008), no entanto sua eficiência preditiva em atributos de solos brasileiros ainda necessita ser testada.

Sendo assim, o objetivo do trabalho foi predizer quantitativamente atributos granulométricos e químicos do solo baseado em seu comportamento espectral utilizando dados de reflectância do infravermelho médio (MidI-R) de 4000 a 400 cm⁻¹ e avaliar a regionalidade de tais predições. A hipótese testada é de que modelagens preditivas por espectroscopia de reflectância Mid-IR apresentam qualidade suficiente para quantificação de atributos do solo.

MATERIAL E MÉTODOS

Foram utilizadas 1259 amostras de solo, provenientes dos horizontes de 396 perfis, pertencentes ao banco de dados do "Laboratório de Sensoriamento Remoto e Geoprocessamento Aplicado a Solos e Uso da Terra", Departamento de Ciência do Solo (LSO/ESALQ/USP). Os locais de coleta distribuem-se pelos Estados de São Paulo Minas Gerais, Mato Grosso do Sul e Goiás.

Análises laboratoriais

Nas análises químicas foram determinados: pH (água, KCl 1N e CaCl₂); bases trocáveis (Ca⁺⁺, Mg⁺⁺, K⁺); soma de bases (SB); capacidade de troca de cátions (CTC); alumínio trocável (Al³⁺); porcentagem de saturação por bases (V %); porcentagem de saturação por alumínio (m %); acidez potencial (H⁺ + Al³⁺); atividade de argila (T); fósforo assimilável (P);

⁽²⁾ Professor; Universidade Federal dos Vales do Jequitinhonha e Mucuri; Diamantina, MG; terra.fabricio@gmail.com; ⁽³⁾ Professor; Universidade de São Paulo; ⁽⁴⁾ Pesquisador; Australian Commonwealth Scientific and Industrial Research Organisation; ⁽⁵⁾ Estudante de Doutorado; Universidade de São Paulo.

matéria orgânica (MO); carbono orgânico (CO); ataque sulfúrico (SiO $_2$, Al $_2$ O $_3$, Fe $_2$ O $_3$, TiO $_2$, MnO, ki e kr) e DTPA-TEA (Zn, Cu, Fe, Mn e B). Na análise granulométrica foi usado o método do densímetro (agentes dispersantes: hexametafosfato de Ca e hidróxido de Na a 1N). Para as determinações mencionadas foram utilizados os métodos descritos por Camargo et al. (2009).

Dados espectrais Mid-IR

O sensor Nicolet 6700 Fourier Transform Infrared (FT-IR), equipado com acessório para aquisição de reflectância difusa (Smart Diffuse Reflectance), foi utilizado para a obtenção dos dados espectrais do infravermelho médio de 400 a 4000 cm⁻¹. As amostras não foram misturadas ao brometo de potássio (KBr) em pó, para evitar reação com a matriz do solo através de trocas iônicas. Como referência foi utilizada uma placa difusa de ouro.

Análise aplicada aos dados

dados granulométricos, Os químicos micronutrientes foram normalizados através das transformações: box-cox (BC), logarítmica na base 10 (L10) e raiz quadrada (RQ), conforme suas distribuições. Alguns atributos permaneceram sem processamento (SP). Como opções de processamento espectral, foram utilizados seguintes cálculos: absorbância (A), centro médio (CM) e correção da linha base (CLB). O emprego de valores de reflectância (R), sem processamento, também foi testado. Os modelos predição foram obtidos pelos seguintes algoritmos de regressão multivariada: mínimos quadrados parciais (PLSR), máquina de vetor suporte (SVM) e árvores de regressão (BT). Os modelos foram calibrados com 70 % e validados com 30 % do conjunto total de amostras. A seleção de amostras deu-se de forma aleatória por local de amostragem. Foi realizada a validação cruzada leave-one-out. O desempenho das quantificações foi obtido pelo coeficiente de determinação (R2), raiz quadrada do erro médio (RMSE) e pelo índice de desempenho RPD (ratio of prediction to deviation). Os desempenhos conforme os valores de RPD foram classificados como: excelente (RPD > 2), razoável (1,4 < RPD < 2,0) e não confiável (RPD < 1,4), segundo Chang et al. (2001). A análise de resíduos foi realizada na etapa de teste a fim de verificar a existência de regionalidade nas predições.

RESULTADOS E DISCUSSÃO

Na normalização dos atributos, os melhores valores de assimetria e curtose (próximos a 0 e 3, respectivamente) foram obtidos pela transformação

BC apenas para areia; pela L10 para MO, CO, P, K Ca, Mg, SB, CTC, todos os pH's e Mn; e pela RQ para silte, Al⁺³, H+A, V%, m%, T, óxidos de Ti e Mn, e os micronutrientes Cu, Fe, Zn e B. Os demais atributos não necessitaram transformações.

No geral, dados espectrais em valores de reflectância proporcionaram maior qualidade nas predições de 65 % dos atributos (Tabela 1). O restante (35 %) foi quantificado utilizando valores de absorbância. Dos atributos preditos com dados de reflectância, para somente 35 % foi necessário o cálculo do centro médio. Por outro lado, apenas os conteúdos de argila foram preditos utilizando valores de absorbância sem pós-processamento (Tabela 1). Para os demais, as transformações CM e CLB sobre os valores de absorbância foram necessárias de forma individualizada ou conjunta.

O algoritmo de regressão multivariada SVM foi o modelo de melhor desempenho preditivo para os atributos, exceto para as quantificações de Al₂O₃, e dos índices Kr e Ki, em que os melhores modelos foram BT e PLSR, respectivamente **(Tabela 1)**. A melhor performance do modelo SVM, frente aos demais, pode estar associada ao fato do algoritmo utilizar como artifício a "função de kernel" para lidar tanto com dados lineares quanto não lineares (Viscarra & Behrens, 2010). Mesmo após a etapa de normalização, alguns atributos permaneceram não linearizados, apenas próximos à normalidade.

Na etapa de validação, os modelos preditivos apresentaram excelente desempenho $(0.76 \le R^2 \le$ 0,90 e 2,03 ≤ RPD ≤ 3,18) na quantificação dos seguintes atributos: areia, argila, Al3+, H+Al, CTC, V% e TiO₂ (Tabela 1). As predições foram razoáveis $(0.51 \le R^{2} \le 0.72 \text{ e } 1.43 \le RPD \le 1.87)$ para o silte, CO, Ca, Mg, SB, m%, T, pH (em H₂O, KCl e CaCl₂), óxidos (Si, Fe, Al e Mn), índices Ki e Kr, Cu e Mn (micronutrientes) (Tabela 1). Outros atributos como P, K e demais micronutrientes (Zn, Fe e B) não foram quantificados de forma confiável $(0,17 \le R^2 \le$ $0.36 \text{ e } 1.11 \leq \text{RPD} \leq 1.26$) (Tabela 1). Tais quantificações foram possíveis dadas as relações, primárias ou secundárias, entre os atributos em questão, principalmente os determinados por análise, e os dados espectrais Mid-IR oriunda de vibrações moleculares fundamentais da interação entre radiação eletromagnética e solo (Janik et al., 1998).

Entre as etapas de calibração e teste, a maioria dos modelos de regressão teve sua eficiência preditiva diminuída, provavelmente, pela utilização do conjunto externo de amostras para o teste, no entanto, apenas o modelo de predição do Fe₂O₃ teve sua classificação alterada de excelente para razoável (Tabela 1). Todos os atributos utilizados para fins de levantamento e classificação de solos, tanto determinados quanto calculados, foram

preditos com qualidade mínima razoável. Destaque para areia, argila, Al⁺³, H+Al CTC e V% cujas predições foram classificadas como excelentes. Os modelos para quantificação dos atributos relacionados à fertilidade do solo não apresentaram qualquer habilidade de predição.

A inexistência de um padrão de distribuição dos erros residuais de predição indicou que a modelagem dos atributos desconsiderou influências dos diferentes locais (regiões) nas quantificações, como pode ser observado na **figura 1** para os dados de argila, H+AI, CTC, V%, CO e pH H₂O.

CONCLUSÕES

A espectroscopia de reflectância Mid-IR apresenta-se como uma tecnologia de alto potencial e aplicação na análise quantitativa de solos, especialmente, para fins de levantamento, sendo no mínimo razoável para a predição de 84 % dos atributos estudados.

A modelagem de atributos indicativos da fertilidade do solo ainda precisa ser melhorada.

As predições mostram-se eficazes para solos de diferentes regiões analisados conjuntamente.

AGRADECIMENTOS

Ao CNPq (processos n° 477298/2007-9 e n° 142323/2010-1) e a CAPES (processo n° BEX 2992/10-8).

REFERÊNCIAS

CAMARGO, O. A.; MONIZ, A. C.; JORGE, J. A. et al.. Métodos de análise química, mineralógica e física de solos do IAC. Campinas, Instituto Agronômico de Campinas, 2009, 77p. (IAC Boletim Técnico, 106, Edição revista e atualizada).

CHANG, C. W.; LAIRD, D. A.; MAUSBACH, M. J. et al. Near-infrared reflectance spectroscopy principal components regression analyses of soil properties. Soil Science Society of America Journal, 65:480-900, 2001.

DEMATTÊ, J. A. M.; CAMPOS, R. C.; ALVES, M. C. et al. Visible-NIR reflectance: a new approach on soil evaluation. Geoderma, 12:59-112, 2004.

JANIK, L. J.; MERRY, R. H.; SKJEMSTAD, J. O. Can mid infrared reflectance analysis replace soil extractions? Australian Journal of Experimental Agriculture, 38:681-696, 1998.

VISCARRA ROSSEL, R. A. & BEHRENS, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158:46-54, 2010.

VISCARRA ROSSEL, R. A.; JEON, Y. S.; ODEH, I. O. A. et al. Using a legacy soil sample to develop a mid-IR spectral library. Australian Journal of Soil Research, 46:1-16, 2008.

Tabela 1 – Desempenho preditivo dos modelos para cada atributo avaliado.

Atributo	Espectro	Calibração			Validação		
		R ²	RMSE	RPD	R ²	RMSE	RPD
Areia	A/CM	0,91	20,10	3,27	0,90	20,68	3,18
Silte	R	0,66	2,02	1,74	0,64	2,02	1,66
Argila	Α	0,90	78,70	3,20	0,89	82,83	3,01
MO	R	0,75	0,14	2,00	0,68	0,15	1,73
CO	R	0,74	0,14	1,93	0,68	0,15	1,73
Р	R	0,35	0,37	1,22	0,36	0,35	1,26
K	R/CM	0,31	0,43	1,19	0,21	0,45	1,13
Ca	R	0,67	0,28	1,71	0,71	0,25	1,84
Mg	A/LB	0,55	0,27	1,52	0,54	0,28	1,46
Al	R/CM	0,75	0,82	2,01	0,81	0,75	2,28
H+AI	R/CM	0,82	0,75	2,36	0,80	0,81	2,23
SB	R	0,68	0,24	1,75	0,72	0,22	1,86
CTC	R	0,79	0,12	2,17	0,78	0,12	2,08
V%	R/CM	0,70	1,12	1,80	0,76	0,99	2,05
m%	A/LB/C M	0,67	1,97	1,75	0,66	1,93	1,72
Т	R	0,69	1,92	1,79	0,66	2,14	1,71
pH H ₂ O	A/LB	0,52	0,04	1,54	0,51	0,04	1,44
pH KCI	R/CM	0,54	0,04	1,54	0,60	0,03	1,59
pH CaCl₂	R/CM	0,62	0,04	1,64	0,68	0,03	1,76
SiO ₂	A/LB/C M	0.68	4,00	1,76	0,66	4,32	1,73
Al_2O_3	A/LB/C M	0,69	4,39	1,74	0,63	4,90	1,65
Fe ₂ O ₃	R/CM	0,79	5,01	2,18	0,71	5,57	1,87
Ki	A/CM	0,65	0,26	1,77	0,56	0,28	1,54
Kr	A/LB	0,72	0,20	1,95	0,52	0,23	1,43
TiO ₂	R	0,78	0,35	2,03	0,76	0,34	2,03
MnO	A/LB/C M	0,66	0,09	1,72	0,69	0,09	1,82
Cu	R	0,74	0,46	1,96	0,53	0,69	1,46
Fe	A/CM	0,34	1,96	1,22	0,29	1,84	1,20
Zn	R	0,16	1,48	1,10	0,17	1,30	1,11
Mn	R	0,56	0,40	1,45	0,52	0,36	1,44
В	R	0,27	0,17	1,12	0,30	0,18	1,17

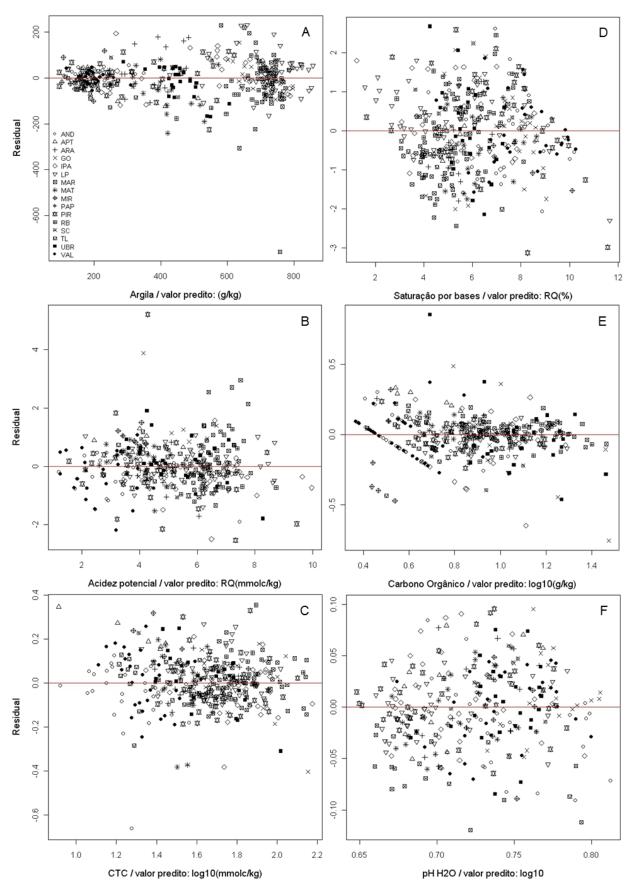


Figura 1 – Distribuições dos resíduos de predição considerando os locais de amostragem para: A) argila, B) H+AI, C) CTC, D) V%, E) CO e F) pH H₂O. Locais: Minas Gerais (LP, TL e UBR), Mato Grosso do Sul (APT, MAR, RB), São Paulo (AND, ARA, IPA, MAT, MIR, PAP, PIR, SC e VAL) e Goiás (GO).