Erosão hídrica avaliada pela alteração de superfície do solo em cultivo da cana-de-açúcar e pastagem natural na região do Campo das Vertentes-MG.

<u>Lucas Ferreira Rios</u>⁽¹⁾; Sérgio Gualberto Martins⁽²⁾; Caio Rodrigues Monteiro⁽³⁾; Erivelton Resende⁽⁴⁾; Marcos de Mendonça Passini⁽⁵⁾; Alexandre Fonseca D'Andréa⁽⁶⁾

(1) Graduando em zootecnia, Universidade Federal de São João del-Rei, São João del-Rei, Minas Gerais; lucasf_rios@yahoo.com.br; (2) Professor substituto de solos, Departamento de Zootecnia, Universidade Federal de São João del-Rei; (3) Graduando em engenharia de produção, Universidade Federal de São João del-Rei; (4) Pesquisador, Empresa de Pesquisa Agropecuária de Minas Gerais; (5) Professor, Departamento de Zootecnia, Universidade Federal de São João del-Rei; (6) Pesquisador, Instituto Federal da Paraíba.

RESUMO: Um dos maiores desafios humanidade tem sido a produção de alimentos baseado na sustentabilidade dos sistemas e que necessariamente passam pelos conceitos conservação do solo e da água. Objetivou-se com este estudo quantificar as perdas de solo por erosão hídrica em um Cambissolo sob cultivo de cana-deaçúcar, pastagem natural e solo descoberto. Para avaliação das perdas de solo por erosão hídrica foi utilizado o método de alteração de superfície do solo, de acordo com metodologia descrita por Santos (1993). O desenho experimental consistiu de repetições para cada tratamento. tratamentos foram: solo descoberto (SD); pastagem natural (PN), composta predominantemente por Brachiaria decumbens e Melinis minutiflora e cultivo de cana-de-açúcar (CA). As perdas de solo para PN Mg.ha⁻¹ foram de 6,46 е 11,42 respectivamente. indicando necessidade alteração do sistema de manejo adotado e implementação de práticas conservacionistas do solo e da água na área em questão.

Termos de indexação: Perdas solo, cultivo convencional, Cambissolo.

INTRODUÇÃO

O Brasil possui em torno de 237 milhões de hectares em áreas cultivadas. Deste total, 170, 55 e 5 milhões de ha são ocupados por pastagens, agricultura e reflorestamentos respectivamente. Um dos maiores desafios da humanidade tem sido a produção de alimentos baseado na sustentabilidade dos sistemas e que necessariamente passam pelos conceitos de conservação do solo e da água. São João del-Rei está inserido na região do Campo das Vertentes. Nesta região há expressiva ocorrência de erosão do tipo voçorocas. Partes destas voçorocas tiverem início devido à atividade de mineração do ouro no século XVIII. Associado a este aspecto, atualmente uma das práticas de renovação de pastagens na região tem sido através do uso do

fogo, prática esta que, elimina a matéria orgânica e causa degradação do solo. Soma-se a estes aspectos o fato desta região ser ocupada em grande extensão pelos solos da classe dos Cambissolos. Estes solos são susceptíveis aos processos erosivos e quando cultivados necessitam de um plano de manejo arrojado. Devido a uma grande extensão em áreas cultiváveis, variação de tipo de solo, diferentes sistemas de manejo e grande número de espécies cultivadas, no Brasil há uma expressiva demanda em estudos relacionados à avaliação da erosão hídrica. Diante necessidade em quantificar as perdas de solo em diferentes sistemas de manejo, é necessário escolher um método que apresente facilidade de aplicação e baixo custo. O método de avaliação de perdas de solo por alteração da superfície, descrito por Bono et al. (1994) e Santos et al. (1998), tem sido empregado com a finalidade de avaliar o processo de erosão do solo. Este método apresenta resultados semelhantes ao método de parcelapadrão, que apresenta um maior custo de implantação e tempo dedicado para obtenção e análise dos dados.

Neste sentido este estudo objetivou quantificar as perdas de solo por erosão hídrica em um Cambissolo sob cana-de-açúcar, pastagem natural e solo descoberto.

MATERIAL E MÉTODOS

O experimento foi realizado na fazenda Risoleta Neves, pertencente à Epamig, localizada no município de São João del-Rei (MG), inserida na mesorregião do Campo das Vertentes, com altitude média de 935 m. O clima é do tipo tropical de altitude, apresentando invernos frios e secos e verões quentes e úmidos, Cwa segundo a classificação de Köppen. A precipitação média anual varia de 1.200 a 1.500 mm por ano.

O solo predominante na área experimental é o Cambissolo, caracterizado por apresentar horizontes A e B pouco espessos. O solo em estudo apresenta grande quantidade de cascalho na profundidade de 0-20 cm. A declividade da área é de 12%.

Para avaliação das perdas de solo por erosão hídrica foi utilizado o método de alteração de superfície do solo, utilizando-se pino de ferro, cravado no solo, de acordo com metodologia descrita por Bono et al. (1994) e Santos et al. (1998). O desenho experimental consistiu de três repetições para cada tratamento. Os tratamentos foram: solo descoberto (SD); pastagem natural (PN), predominantemente composta por Brachiaria decumbens e Melinis minutiflora e cultivo de canade-açúcar, (CA). O preparo de solo para cana-deaçúcar foi o cultivo convencional com aração e gradagem.

As parcelas foram instaladas em dezembro de 2012 e os dados coletados até abril de 2013, período de maior ocorrência de chuvas na região. Foram cravados pinos, hastes metálicas de 0,4 m de comprimento, até atingir 0,2 m de profundidade. Todos os pinos foram calibrados à mesma profundidade e medidos semanalmente com paquímetro. Nas avaliações, considerou-se 0,2 m como superfície de referência, sendo valores acima da mesma interpretados como arraste de solo e abaixo, deposição de sedimento.

Os pinos foram instalados a 1 m de distância entre si formando uma malha. Cada parcela, com dimensão de 4 x 9 m foi contemplada com 36 pinos.

As amostras para determinação de densidade do solo foram coletadas na profundidade de 0-10 cm, utilizando um anel volumétrico. A densidade foi determinada de acordo com metodologia de Black & Hartge (1986). Para avaliação da fertilidade do solo, as amostras foram coletadas na camada de 0-20 e analisadas de acordo com metodologia descrita em Embrapa (1997). As perdas de solo foram estimadas pela seguinte equação:

P = h.A.Ds

Sendo:

 $P = \text{perdas de solo}, \text{ em Mg.ha}^{-1};$

h =media de alteração de nível de superfície do solo, medida nos pinos, em m;

A =área considerada (36 m²)

Ds = densidade do solo (Mg.m⁻³)

RESULTADOS E DISCUSSÃO

As perdas de solo nos diferentes tratamentos podem ser observadas na **figura 1**. As perdas de solo para solo descoberto (SD) e cobertura com

cana-de-açúcar (CA) e pastagem natural (PN), apresentaram uma amplitude de 6,96 a 18,46 Mg.ha⁻¹. As maiores perdas foram para o solo descoberto, condição esta que favorece a máxima perda de solo. A parcela desprovida de vegetação favorece a erosão por salpicamento e arraste das partículas de solo pelo escoamento superficial. Verificou-se também que na parcela descoberta houve formação de selamento superficial, possivelmente conferido pelo impacto direto das gotas de chuva sobre a superfície do solo e devido aos valores de silte (Tabela 1), apresentados na análise textural. Os valores de perdas de solo para pastagem natural e cana-de-açúcar foram de 6,46 e 11,42 Mg.ha⁻¹ respectivamente. Santos et al. (1998) avaliaram perdas de solo em pastagem natural em Cambissolo utilizando a mesma metodologia e verificou valores na ordem de 22,4 Mg.ha⁻¹. Sparandio et al. (2012) avaliaram perdas de solo também utilizando a mesma metodologia para um período de um ano e chegaram a um valor 72,99 Mg.ha⁻¹. As menores perdas para pastagem natural são possivelmente devido à cobertura vegetal proporcionada pela mesma, além de apresentar sistema radicular do tipo fasciculada, o que possivelmente tenha conferido maior estabilidade de agregados e maior permeabilidade à água. Os valores de perdas de solo para cana-de-açúcar foram 64% maiores que a as perdas de solo para pastagem natural. Possivelmente os altos valores de perdas de solo para a cana-de-acúcar tenham sido devido ao sistema de preparo do solo adotado, que foi o cultivo convencional. Maiores valores de densidade para área com cana-de-açúcar quando comparado com a pastagem natural também foram observados (Tabela 1), possivelmente devido ao sistema de preparo do solo do tipo convencional. Solos com maiores valores de densidades apresentam menor permeabilidade à água e maior escoamento superficial, conferindo maior perda de solo. As perdas de solo para cana-de-açúcar estão acima do limite de tolerância de perdas de solo para a classe dos Cambissolos, que de acordo com Bertoni & Lombardi Neto (1990), são de 2 a 4 Mg.ha ano⁻¹. Por apresentar alta susceptibilidade aos processos erosivos, o cultivo em áreas Cambissolo não se deve realizar movimentação de solo por ocasião do preparo, sendo necessária a adoção do cultivo mínimo e preferencialmente a utilização do solo com culturas permanentes. Possivelmente adotando-se este manejo, as perdas serão menores. Os altos valores de saturação de bases (Tabela 2) para cana-de-açúcar foram devidos à adubação que a mesma recebeu. A área de solo descoberto também recebeu adubação, pois antes da instalação do experimento a área era

cultivada com cana-de-açúcar.

CONCLUSÕES

As perdas de solo para cana-de-açúcar estão acima do limite de tolerância de perdas de solo para classe dos Cambissolos. As perdas de solo para pastagem natural e cana-de-açúcar foram de 6,46 Mg.ha⁻¹ 11,42 respectivamente, indicando necessidade de alteração do sistema de manejo implementação adotado е de práticas conservacionistas do solo e da água na área em questão.

REFERÊNCIAS

BERTONI, J & LOMBARDI NETO, F. Conservação do solo. São Paulo: Ícone, 1990. 355p.

BLACK, G.R. & HARTGE, K.H. Bulk density. In: KLUTE, A., ed. Methods of soil analysis: physical and mineralogical methods. 2.ed. Madison, American Society of Agronomy, 1986. p.363-375.

BONO, J. A. M. et al. Cobertura vegetal e perdas de solo por erosão em diversos sistemas de melhoramento de pastagens nativas. Pasturas tropicales, 18:2-8, 1996.

CARDOSO, P. D. et al. Erosão hídrica avaliada pela alteração na superfície do solo em sistemas florestais. Scientia Forestalis, 66:25-37,2004.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. 2.ed. Rio de Janeiro, 1997. 212p.

SANTOS, D. et al. Perdas de solo e produtividade de pastagens nativas melhoradas sob diferentes práticas de manejo. Pesq. Agropec. Brasília, 33:183-189, 1998.

SPERANDIO, H. V. et al. Avaliação da erosão hídrica pela alteração na superfície do solo em diferentes coberturas vegetais de uma sub-bacia hidrográfica no Município de Alegre, ES. Semina: Ciências Agrárias, 33:1411-1418, 2012.

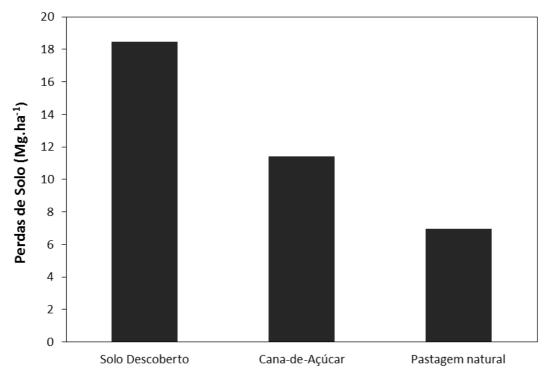


Figura 1 – Perdas de solo para solo descoberto, cana-de-açúcar e pastagem natural.

Tabela 1. Resultado da análise física de caracterização do solo estudado.

Tratamentos	Densidade	Granulometria						
	do solo	Areia grossa	Areia fina	Silte	Argila			
	(Mg.m ⁻³)	(%)						
Solo Descoberto	1,266	6	10	41	37			
Cana-de-açúcar	1,320	7	24	36	33			
Pastagem Natural	1,238	4	10	51	35			

Tabela 2. pH em água, matéria orgânica e componentes do complexo sortivo para as amostras de solo correspondente a cada tratamento.

Tratamentos	pH	Valor¹			Cora	Р	I/	Co. N	Ma	٨١	
		S	Т	V	m	- C org	Р	K	Ca	Mg	Al
		(cmolc.kg ⁻¹)		(%)		(g.kg-1)	mg/dm ³		(cmolc.kg ⁻¹)		
Solo Descoberto	6,86	3,83	5,14	74,5	0,0	12,9	0,9	78	2,32	1,31	0,0
Cana de Açúcar	7,18	5,16	6,06	85,1	0,0	12,2	1,5	105	3,23	1,66	0,0
Pastagem Natural	5,68	1,06	3,13	33,9	32,1	10,2	0,4	73	0,61	0,26	0,5

¹ Valor S = soma de bases; Valor T = capacidade de troca de cátions a pH 7,0; Valor V = saturação por bases; Valor m = saturação por alumínio.