Crescimento e Nutrição Mineral na micropropagação de bastão do imperador sob diferentes relações Potássio/Magnésio⁽¹⁾

<u>Éder Lucas Côrrea dos Santos</u>⁽²⁾; Viviane Amaral Toledo Coelho⁽³⁾; Julia Maria Silva Moreira⁽⁴⁾; Gabrielen de Maria Gomes Dias⁽⁵⁾; Mozart Martins Ferreira⁽⁶⁾; Moacir Pasqual⁽⁷⁾

(1) FAPEMIG, Capes e CNPq.

⁽²⁾Graduando do 5º período de Agronomia, bolsista Iniciação Cientifica CNPq, Departamento de Ciência do Solo (DCS)/Universidade Federal de Lavras (UFLA), Lavras-MG. E-mail: ederlcs1991@hotmail.com; ⁽³⁾Doutoranda, bolsista do CNPq, DCS/UFLA; ⁽⁴⁾Graduanda do 4º período de Agronomia, DCS/UFLA; ⁽⁵⁾Doutoranda, bolsista do CNPq, Departamento de Agricultura (DAG)/UFLA; ⁽⁶⁾Professor Titular do DCS/ UFLA; ⁽⁷⁾Professor Titular do DAG/ UFLA.

RESUMO: O objetivo desse trabalho foi avaliar o crescimento in vitro e a composição mineral de plantas de bastão do imperador submetidas às diferentes relações de potássio e magnésio (K/Mg). O delineamento foi inteiramente casualizado, com 6 tratamentos e 5 repetições. Os tratamentos foram baseados no meio MS com diferentes relações de K/Mg [22/1, 20/3 (controle), 16/7, 12/11, 8/15 e 4/19]. Foram avaliadas: matéria fresca da parte aérea e raiz, número de folhas, altura, comprimento da raiz, matéria seca da parte área e raiz e realizada a analise química do tecido vegetal. O crescimento da parte aérea de bastão do imperador in vitro nas diferentes relações K/Mg é pouco afetado, enquanto para crescimento radicular as concentrações 22/1 e 20/3 são as menos viáveis. Os teores dos macronutrientes encontrados no tratamento controle são (g kg⁻¹): K 36,15; Ca 5,54; Mg 1,47; P 3,04 e S 0,86. A ordem decrescente de acúmulo de macronutrientes nas folhas de bastão do imperador in vitro no é: K>Ca>P>Mg>S.

Termos de indexação: cultivo *in vitro*, *Etlingera elatior* (Jack) R.M. Smith, plantas ornamentais tropicais.

INTRODUÇÃO

As flores tropicais são apontadas como espécies de grande potencial de comercialização, tanto no mercado interno como no externo, pelas inúmeras características favoráveis, como beleza, exotismo, diversidade de cores e formas, durabilidade póscolheita, além da resistência ao transporte (LOGES et al., 2005). A floricultura brasileira vem adquirindo notável desenvolvimento e se caracteriza já como um dos mais promissores segmentos da horticultura intensiva no campo do agronegócio (JUNQUEIRA e PEETZ, 2008).

O bastão do imperador (*Etlingera elatior* (Jack) R. M. Smith), pertence à família Zingiberaceae, tem origem da Malásia e possui inflorescências grandes de coloração vermelha, rosa ou rosa claro, sendo considerada uma planta de alto valor ornamental (LINS & COELHO, 2003). As inflorescências são

grandes, sustentadas por hastes grossas, com aproximadamente 1,5 a 2 m de altura (LORENZI & MELO FILHO, 2001; LAMAS, 2004). A demanda interna pelo bastão do imperador tem sido crescente com excelentes perspectivas no mercado. Nessa espécie, a qualidade da muda para produção comercial é de grande importância, e a produção de uma boa muda depende de vários fatores (LAMAS, 2004).

Uma das técnicas de propagação das mudas é a *in vitro* ou micropropagação, que visa à rápida multiplicação e produção de plantas, em quantidade e qualidade superiores, possibilitando maior rapidez e uniformidade das mudas produzidas além do controle efetivo de doenças (ARDITTI & ERNEST, 1993). Os meios de cultivo utilizados na propagação *in vitro* são constituídos de diversas substâncias, como vitaminas, nutrientes e reguladores de crescimento. Cada nutriente apresenta uma função importante na formação das plantas (PAULA, 2010).

Além de quantidades adequadas de nutrientes para o pleno desenvolvimento das plantas, é necessário também que ocorra o equilibrio entre os mesmos. A presença de um dado nutriente pode afetar seriamente a disponibilidade outro. São vários os casos de competição durante o processo de absorção, tratados em profundidade na nutrição mineral de plantas (FURTINI et al., 2001).

Estudos são conduzidos para verificar o comportamento de diferentes espécies no que diz respeito a nutrição mineral na propagação *in vitro*. Entretanto, envolvendo plantas ornamentais, especificamente o bastão do imperador não é encontrado nenhum registro na literatura sobre equilíbrio nutricional.

Nesse sentido, o objetivo desse trabalho foi avaliar o crescimento *in vitro* e composição mineral de plantas de bastão do imperador submetidas a diferentes relações de potássio e magnésio (K/Mg).

MATERIAL E MÉTODOS

O experimento foi conduzido no Laboratório de Cultura de Tecidos do Departamento de Agricultura da Universidade Federal de Lavras, Lavras-MG. Os explantes iniciais de bastão do imperador variedade Porcelana pré-estabelecidos *in vitro* foram fornecidos pela Embrapa Agroindústria Tropical, Fortaleza-CE.

Os explantes foram transferidos para o meio de cultura de acordo recomendações Murashige & Skoog – MS (1962), acrescidos 30 g L⁻¹ de sacarose e 2,5 mg L⁻¹ de BAP (6-benzilaminopurina). O pH do meio foi ajustado para 5,7±0,1, e adicionados 1,5g L⁻¹ de Phytagel® e posteriormente foram autoclavados. O meio de cultura foi distribuído em 30 mL por frasco, com capacidade de 250 mL cada.

Após 60 dias, obteve-se o número necessário de plântulas para os experimentos.

Os explantes (rizomas) foram inoculados em diferentes relações potássio/cálcio (K/Mg). Os tratamentos K/Mg (mmol L⁻¹) foram: 22/1, 20/3 (controle), 16/7, 12/11, 8/15 e 4/19. As concentrações de 20 mmol L⁻¹ para K e 3 mmol L⁻¹ para Mg foram as recomendadas por Murashige & Skogg (1962) e portanto são consideradas controle. O delineamento experimental foi o inteiramente casualizado (DIC), com seis tratamentos, cinco repetições, cada parcela experimental foi constituída por 2 explantes. O balanceamento do nitrogênio foi realizado com a utilização de nitrato de amônio (NH₄NO₃)

Depois de estabelecidos os tratamentos, os explantes foram mantidos em sala de crescimento, a temperatura de 25±2°C, sob irradiância 36 µmol m-² s⁻¹ e fotoperíodo de 16 horas.

Após 80 dias, as plântulas foram retiradas dos frascos e avaliadas as seguintes variáveis de crescimento: altura, número de folhas, comprimento da raiz e massa da matéria fresca da parte aérea e raiz. Em seguida, o material colhido, foi lavado em água destilada, acondicionado em saco de papel e mantido em estufa com circulação forçada de ar a 65 °C até massa constante. Após a determinação da massa de matéria seca, foi feita a moagem do material vegetal das folhas em moinho Willey com peneira de 20 mesh, para posteriores determinações da composição mineral segundo metodologia descrita por Malavolta et al. (1997) .

Os dados obtidos foram submetidos à análise de variância e as médias avaliadas pelo teste Scott & Knott, a 5% de probabilidade. As análises estatísticas foram realizadas com o auxílio do programa computacional Sisvar (FERREIRA, 2011).

RESULTADOS E DISCUSSÃO

As diferentes relações K/Mg proporcionaram diferenças significativas para a maioria das variáveis de crescimento. Os resultados referentes ao número de folhas, altura, comprimento de raiz, matéria fresca da parte aérea, matéria fresca da raiz,

matéria seca da parte aérea e matéria seca da raiz das plantas de bastão do imperador em função de diferentes relações de K/Mg são apresentados na tabela 1.

O número de folhas, altura e matérias fresca e seca da parte aérea das plantas não foram influenciados pelas diferentes relações de K/Mg. Já para comprimento da raiz, as relações de K/Mg iguais a 22/1 e 20/3 (controle) apresentaram os menores valores. Para produção de matérias fresca e seca da raiz, os menores valores foram encontrados nas relações de K/Mg igual a 22/1 e 20/3 (controle) quando comparado aos demais.

Paula (2010), estudando diferentes relações K/Mg em plantas de bananeira cultivadas *in vitro*, observou que, a cultivar Caipira teve melhor desenvolvimento nas concentrações 20/3 (controle) e 22/1. Ainda de acordo esse autor, a cultivar Japira obteve melhor desenvolvimento na relação 22/1, enquanto a cultivar Tropical apresentou melhor desenvolvimento na relação 20/3 (controle).

Os teores e acúmulos de K, Ca e Mg das folhas de bastão do imperador sob diferentes relações de K/Mg encontram-se na Tabela 2

Os menores teores de K foram observados nas tratamentos plantas dos com menores concentrações do mesmo (8/15 e 4/19). Já para o acúmulo desse nutriente, os maiores valores foram verificados nas plantas das relações K/Mg de 22/1, 20/3 e 12/11. Resultados semelhantes foram observados por Paula (2010), em plantas de bananeira (cultivar Caipira e Japira) cultivadas in vitro sob diferentes relações K/Mg. Esse autor ainda observou que, os maiores teores de K foram constatados nas plantas dos tratamentos com maiores concentrações desse nutriente em meio de cultivo.

O teor e acúmulo de Ca das folhas de bastão de imperador não foram influenciados pelas diferentes relações de K/Mg. Esses dados corroboram com Paula (2010) em plantas de bananeira da cultivar Japira.

Analisando-se o teor de Mg observou-se que, os maiores valores foram encontrados nas plantas dos tratamentos com meio de cultivo com maiores concentrações desse nutriente (8/15 e 4/19). Enquanto, os menores teores de Mg foram obtidos nas menores concentrações do mesmo em meio de cultura.

Já no acúmulo de Mg, os maiores valores foram verificados nas plantas das relações de K/Mg de 8/15 e 4/19, enquanto o menor valor foi observado nas plantas dos tratamentos 22/1, 20/3 e 16/7. Esse ultimo fato pode ser explicado pelo baixo teor de Mg encontrado nessas plantas. Resultados semelhantes foram observados por Paula (2010), em plantas de

bananeira (cultivar Caipira e Japira) cultivadas *in vitro* sob diferentes relações K/Mg. Esse autor ainda observou que, os maiores teores de Mg foram constatados nos tratamentos com maiores concentrações desse nutriente em meio de cultura.

Os teores e acúmulos de P e S das folhas de bastão do imperador sob diferentes relações de K/Mg são apresentados na Tabela 3

Dentre as plantas dos tratamentos estudados, não foram observadas diferenças estatísticas para os teores de P e S e acúmulo de P. Já para acúmulo de S somente as plantas dos tratamentos 8/15 e 4/19 diferiram estatisticamente das demais, apresentando os maiores valores.

CONCLUSÕES

Para a maioria das variáveis analisadas, o crescimento da parte aérea de bastão do imperador in vitro nas diferentes relações K/Mg é pouco afetado, enquanto para crescimento radicular as concentrações 22/1 e 20/3 são as menos viáveis.

Os teores dos macronutrientes encontrados em plântulas de bastão do imperador no tratamento controle são (g kg⁻¹): K 36,15; Ca 5,54; Mg 1,47; P 3,04 e S 0,86.

A ordem decrescente de acúmulo de macronutrientes nas folhas de bastão do imperador *in vitro* no é: K> Ca> P> Mg> S.

AGRADECIMENTOS

A FAPEMIG pelo apoio financeiro.

REFERÊNCIAS

ARDITTI, J.; ERNEST, R. Micropropagation of orchids, New York: J. Wiley, 1993.

FERREIRA, D. F. SISVAR software: versão 5.1. Lavras: DEX/UFLA, 2011. Software.

FURTINI NETO, A. E.; VALE, F. R. do; RESENDE, A. V. de; GUILHERME, L. R. G.; GUEDES, G. A. A. de. **Fertilidade do Solo.** Lavras: FAEPE, 2001. 252p.

JUNQUEIRA, H. A.; PEETZ, M. S. Mercado interno para os produtos da floricultura brasileira: características, tendências e importância socioeconômica recente. **Revista Brasileira de Horticultura Ornamental**, Campinas, v.14, n.1, p. 37-52, 2008.

LAMAS, A. M. **Floricultura tropical**: tecnologia de produção. Tabatinga: [s.n.], 2004. 65p.

LINS, S. R. O.; COELHO, R. S. B. Antracnose em inflorescências de bastão do imperador (*Etlingera elatior*): ocorrência e métodos de inoculação. **Summa Phytopathologica**, v. 29, n. 4, p. 355-358, 2003.

LOGES, V.; TEIXEIRA, M. C. F.; CASTRO, A. C. R.; COSTA, A. S. Colheita, pos-colheita e embalagem de flores tropicais em Pernambuco. **Horticultura Brasileira**, v. 23, n. 3, p. 699-702, 2005.

LORENZI, H.; MELO FILHO, L. E. **As plantas tropicais de R. Burble Marx**. São Paulo: Instituto Plantarum de Estudos da Flora, 2001. 488p.

MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. de. **Avaliação do estado nutricional das plantas:** princípios de aplicações. 2. Ed. Piracicaba: POTAFOS, 1997. 319p.

MURASHIGE, T.; SKOOG, F. Revised medium for rapid growth and bioassays with tobacco tissue culture. **Physiologia Plantarum,** Copenhagen, v. 15, n. 2,p. 473-497, July 1962.

PAULA, Y. C. M. Nutrição mineral na micropropagação da bananeira. Lavras : UFLA, 57p. **Dissertação (mestrado)** – Universidade Federal de Lavras, 2010.

Tabela 1. Variáveis de crescimento e produção de matéria seca de bastão do imperador submetidas a meio de cultura com diferentes relações K/Mg. Lavras-MG, 2013.

Relação K/Mg	Número de Folhas	Altura	Comprimento da Raiz	Matéria Fresca		Matéria seca	
Rylvig	Folias		ua Naiz	Parte Aérea Raiz		Parte	Raiz
			cm		g	Aérea	
22/1	5 ^a	9,8a	10,84b	2,04a	0,12b	0,143a	0,009b
20/3	6 ^a	11,2a	9,40b	3,00a	0,24b	0,177a	0,015b
16/7	4 ^a	10,2a	20,50a	1,79a	0,63a	0,116a	0,031a
12/11	5 ^a	13,5a	19,20a	2,33a	0,63a	0,143a	0,030a
8/15	6 ^a	12,1a	18,20a	2,30a	0,60a	0,156a	0,038a
4/19	5 ^a	11,3a	15,80a	2,07a	0,64a	0,139a	0,049a

Médias seguidas de mesma letra na coluna não diferem entre si, pelo teste Scott & Knott a 5% de probabilidade.

Tabela 2. Matéria seca, teor e acúmulo de potássio, cálcio e magnésio nas folhas de bastão do imperador sob diferentes relações de K/Mg. UFLA, Lavras, MG, 2013.

	Matéria	Teor de	Acúmulo	Teor de	Acúmulo	Teor de	Acúmulo
Relação	seca	Potássio	de	Cálcio	de Cálcio	Magnésio	de
K/Mg			Potássio			_	Magnésio
	G	g kg ⁻¹	mg planta ⁻¹	g kg ⁻¹	mg planta ⁻¹	g kg ⁻¹	mg planta ⁻¹
22/1	0,143	35,42 a	5,062a	5,83a	0,834a	0,93c	0,130c
20/3	0,177	36,15 a	6,372a	5,54a	0,984a	1,47c	0,264c
16/7	0,116	36,11 a	4,176b	6,25a	0,724a	3,14b	0,366c
12/11	0,143	37,19 a	5,390a	5,84a	0,840a	4,34b	0,624b
8/15	0,156	28,82 b	4,494b	5,41a	0,848a	6,42a	1,000a
4/19	0,139	25,79 b	3,588b	5,84a	0,812a	7,91a	1,110a

Médias seguidas de mesma letra na coluna não diferem entre si, pelo teste Scott & Knott a 5% de probabilidade.

Tabela 3. Matéria seca, teor e acúmulo de fósforo e enxofre nas folhas de bastão do imperador sob diferentes relações de K/Mg. UFLA, Lavras, MG, 2013.

	Matéria seca	Teor de	Acúmulo de	Teor de	Acúmulo de
Relação K/Mg		Fósforo	Fósforo	Enxofre	Enxofre
•	g	g kg ⁻¹	mg planta ⁻¹	g kg ⁻¹	mg planta ⁻¹
22/1	0,143	4,07a	0,582a	0,82a	0,120b
20/3	0,177	3,04a	0,540a	0,86a	0,150b
16/7	0,116	3,76a	0,436a	1,07a	0,124b
12/11	0,143	3,54a	0,508a	1,18a	0,168b
8/15	0,156	2,87a	0,450a	1,52a	0,238a
4/19	0,139	4,55a	0,632a	1,74a	0,242a

Médias seguidas de mesma letra na coluna não diferem entre si, pelo teste Scott & Knott a 5% de probabilidade.