Efeito de semeadora equipada com haste sulcadora de ação profunda no desenvolvimento radicular de milho em plantio direto⁽¹⁾

<u>Márcio Renato Nunes</u>⁽²⁾; José Eloir Denardin⁽³⁾; Antônio Faganello⁽³⁾; Luiz Fernando Spinelli Pinto⁽⁴⁾; Eloy Antonio Pauletto⁽⁴⁾; Tiago Scheunemann⁽⁵⁾

(1) Trabalho executado com apoio da Coordenação de Aperfeiçoamento de Nível Superior (CAPES); (2) Mestrando do Programa de Pós Graduação em Manejo e Conservação do Solo e da Água; Universidade Federal de Pelotas (UFPel); Pelotas, Rio Grande do Sul; Email: márcio_r_nunes@yahoo.com.br; (3) Pesquisador do centro nacional de pesquisa de trigo – Embrapa Trigo; (5) Graduandos em Agronomia, Bolsista de iniciação científica, Departamento de Solos – UFPel; (4) Professor Adjunto, Departamento de Solos, Faculdade de Agronomia Eliseu Maciel – UFPel.

RESUMO: A degradação física do solo em áreas sob "plantio direto" tem favorecido a concentração de raízes das culturas na camada superficial do solo levando a frustrações de safra em anos de estiagens. Este trabalho teve por objetivo avaliar o efeito da utilização de semeadora equipada com haste sulcadora de ação profunda sobre o desenvolvimento do sistema radicular de milho em "plantio direto". Em Latossolo Vermelho manejado sob "plantio direto" com camada compactada, semeou-se milho com semeadora equipada com elemento rompedor de solo tipo disco, atuando até 0,05m de profundidade e haste sulcadora ajustada para operar a 0,07 e 0,17m de profundidade. Estas profundidades corresponderam aos tratamentos. Quando as plantas de milho se encontravam no estádio fenológico R3, avaliou-se o diâmetro do segundo entrenós acima do solo e o sistema radicular do milho. Em cada parcela foi coletado um monólito de solo correspondente a 9 dm³, com placa de pregos, medindo 0,6 m x 0,3 m x 0,05 m. Foi determinada a massa de matéria seca das raízes, comprimento radicular e a densidade radicular do milho. A utilização de semeadora equipada com haste sulcadora de ação profunda para a semeadura de milho em "plantio direto" promoveu aumento da massa de matéria seca de raízes, aumentou a densidade e o comprimento radicular, além de promover o aprofundamento do sistema radicular do milho.

Termos de indexação: compactação do solo, matéria seca de raízes.

INTRODUÇÃO

O "sistema plantio direto" é conceituado como um complexo de preceitos da agricultura conservacionista destinado à exploração de sistemas agrícolas produtivos, compreendendo: mobilização de solo apenas na linha ou cova de semeadura ou de plantio; manutenção de resíduos culturais na superfície do solo; diversificação de

espécies via rotação, sucessão e/ou consorciação de culturas; redução ou supressão do intervalo de tempo entre a colheita e a semeadura subsequente; manutenção da cobertura permanente de solo; aporte ao solo de material orgânico em quantidade, qualidade e frequência compatíveis com a demanda biológica do solo (Denardin et al., 2011).

Estes preceitos não são plenamente adotados. O que se observa em áreas sob "plantio direto" é um solo degradado física (Drescher et al., 2011) e quimicamente (Nunes et al., 2011). À pressão exercida pelo tráfego de máquinas (Veiga et al., 2007) e/ou pisoteio animal compacta o solo, elevando sua densidade e reduzindo seu espaço poroso (Rossetti et al., 2012), compactando-o. A calagem e adubação, realizadas em superfície, corrige a acidez e concentra nutrientes (Denardin et al., 2008; Nunes et al., 2011) apenas na camada superficial do solo e favorece a degradação física mediante dispersão de argilominerais na superfície com posterior eluviação destes para a camada subsuperficial, promovendo o adensamento do solo (Carvalho Jr. et al., 1998).

Na camada de 0-0,07m de profundidade as condições físicas e químicas do solo são favoráveis ao desenvolvimento radicular das plantas. O mesmo não ocorre na camada de 0,07-0,20m, onde a densidade e resistência à penetração são elevadas, a permeabilidade do solo ao ar, água e calor, e a fertilidade química do solo são reduzidas. Estes fatores tem favorecido a concentração do sistema radicular das culturas na camada superficial do solo (De Maria et al., 1999; Bergamin et al., 2010).

A camada subsuperficial degradada limita a ascensão de água do subsolo para a camada superficial (Silva et al., 2009), onde o sistema radicular se distribui e, na ocorrência de pequenas estiagens, o estres hídrico se manifesta. Isto justifica os relatos de Denardin et al. (2008) que apontam para frequentes frustrações de safra ao longo de 35 anos após a adoção do "plantio direto" no RS. O que para eles, está associado à degradação estrutural do solo manejado sob o "plantio direto".

As semeadoras utilizadas em "plantio direto" são equipadas com elementos rompedores de solo que

operam na linha de semeadura mobilizando o solo e depositando o fertilizante apenas acima da camada degradada (Denardin et al., 2008), sem contribuir para mitigação da compactação do solo e para o desenvolvimento das raízes em profundidade. A utilização de semeadoras equipadas com hastes sulcadora de ação profunda, ao contrário de discos lisos e de hastes que atuam a 0,05 e 0,07m de profundidade, poderia contribuir para mitigar a degradação estrutural do solo na camada subsuperficial em "plantio direto".

Assim, o objetivo deste estudo foi avaliar o efeito da utilização de semeadora equipada com haste sulcadora de ação profunda no desenvolvimento do sistema radicular de milho em "plantio direto".

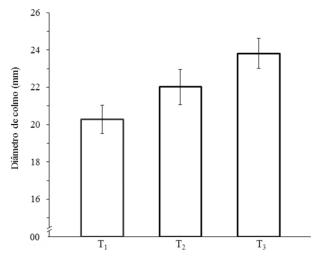
MATERIAL E MÉTODOS

O ensaio foi conduzido no campo experimental da Embrapa Trigo (28°11'20" S, 52°19'62" W) em um Latossolo Vermelho Aluminoférrico húmico (Embrapa, 2006), em relevo suave ondulado. Conforme classificação de Köppen o clima da região é o Cfa. Nos 16 anos antecessores a implantação do ensaio, a área foi manejada sob "plantio direto".

Durante a condução do estudo, cultivou-se soja (Glycine max) e milho (Zea mays) no verão, e trigo (Triticum aestivum) e centeio (Secale cereale) no inverno, na seguinte ordem: 09/2009 milho; 03/2010 trigo; 10/2010 soja; 03/2011 centejo; 09/2011 milho. As culturas de verão foram semeadas utilizando uma semeadora equipada com: disco liso; haste sulcadora ajustável para operar até 0,17m de profundidade, para abrir o sulco de semeadura e posicionar o fertilizante no solo; discos duplos, para posicionar a semente no solo e roda, em forma de "V", para fechar o sulco de semeadura. Os tratamentos constituíram-se pelas profundidades de ação dos elementos rompedores de solo da semeadora, quais sejam: T₁ = disco liso, com ação a 0,05m de profundidade; T_2 = haste sulcadora ajustada para agir até 0,07m de profundidade; T₃ = haste sulcadora ajustada para agir a 0,17m de profundidade. Os tratamentos disco liso (T₁) e haste sulcadora com ação a 0,07m de profundidade (T2), por corresponderem à profundidade de ação dos elementos rompedores de solo tipicamente usados nas semeadoras utilizadas pelos produtores rurais da região subtropical úmida do Brasil. O ensaio foi montado na forma de blocos casualizados, com quatro repetições. Cada unidade experimental possuía 43,2m² (8,0 x 5,4m).

Avaliou-se o sistema radicular do milho quando este estava no estádio fenológico R3 (Ritchie & Hanway, 1993). Em cada parcela foi coletado um

monólito de solo correspondente a 9 dm³, com placa de pregos. Anteriormente a coleta mediu-se com paquímetro analógico, o diâmetro do segundo entrenó acima do solo, em 10 plantas de milho na linha central da parcela. Calculou-se o diâmetro médio do segundo entrenó das plantas, o qual serviu de referência para a escolha da planta, da qual seria avaliado o sistema radicular. Para realizar a coleta: a planta foi cortada rente ao solo; abriu-se uma trincheira no sentido transversal a linha de semeadura, deixando a planta no centro; e emparelhou-se a trincheira até a metade do diâmetro do colmo do milho. Cada placa utilizada media 0,6m x 0,3m x 0,05m. O espaçamento entre linhas do milho foi de 0,6m, assim a placa abrangia 0,3m de cada lado da planta. Os monólitos foram imersos em solução de NaOH 0,2M, por 24 horas, facilitando a retirada do solo. Após as raízes serem limpas, cada monólito foi divido em três camadas no sentido vertical (0,0-0,05; 0,05-0,17; 0,17-0,30m) e três colunas de 0,20m. Assim obteve-se 9 monólitos menores, sendo as raízes destes avaliadas separadamente.


Determinou-se a massa fresca de raiz, em balança semianalítica de precisão 0,0001g, a partir da qual se retirou o correspondente a 30% das raízes, as quais foram utilizadas para quantificar o comprimento radicular. Para esta determinação utilizou-se o programa Safira, descritas por Jorge & Rodrigues (2008). Para tal, as raízes foram: acondicionadas em um recipiente com uma lâmina de água e organizadas de forma a não se sobreporem; digitalizadas utilizando um escâner HP Escanjet 3570C; e as imagens obtidas processadas no programa. As frações de 30% e 70% da amostra foram secas separadamente, em estufa a 65 °C por 72 horas. Obteve-se a umidade de cada amostra, o que permitiu a extrapolação dos valores do comprimento radicular para toda a amostra. Após a secagem e pesagem, obteve-se a massa de matéria seca de raízes. Pela relação deste valor com o volume do monólito, obteve-se a densidade (kg m⁻³) e comprimento (m m⁻³) radicular em cada monólito.

Os dados referentes à massa de matéria seca de raiz; densidade radicular; e comprimento radicular; após realização da ANOVA, foram comparados dentro da mesma camada, pelo teste tukey a 5% de probabilidade de erro.

RESULTADOS E DISCUSSÃO

Os parâmetros referentes às plantas de milho mostram efeito positivo da utilização da semeadora equipada com haste sulcadora ajustada para operar

a 0,17m de profundidade (T₃) em "plantio direto". O diâmetro do colmo do milho (Figura 1) aumentou comparação a utilização da semeadora equipada com disco liso atuando a 0,05m de profundidade (T₁). Isto decorre da melhor condição subsuperficial, solo na camada proporcionada pela haste sulcadora de profunda (T₃), estando de acordo com Freddi et al. (2007) e Freddi et al. (2009) que observaram redução linear da altura, redução do diâmetro do colmo, redução da massa de matéria seca das plantas e redução da produtividade de grãos de milho, com o aumento da Rp (compactação) na profundidade de 0,0 a 0,2m, em um Latossolo Vermelho de textura média e em um Latossolo Vermelho de textura argilosa.

Figura 1. Diâmetro do colmo do milho semeado com semeadora equipada com elemento rompedor de solo tipo disco liso atuando a 0,05m de profundidade (T₁), haste sulcadora operando a 0,07m (T₂) e haste sulcadora operando a 0,17m de profundidade (T₃). Barras verticais representam os desvios em relação à média.

O desenvolvimento radicular do milho (**Tabela 1**), também foi favorecido quando da utilização da semeadora equipada com haste sulcadora de ação a 0,17m (T_3). Observa-se, no T_3 , massa de matéria seca total de raiz superior à massa de matéria seca de raízes das plantas semeadas com semeadora equipada com disco liso operando a 0,05m (T_1) e haste sulcadora operando a 0,07m de profundidade (T_2). O acréscimo foi pronunciado na camada 0,05 a 0,17m, onde se obteve diferença significativa para T_3 em relação a T_1 e T_2 . A degradação física na camada subsuperficial favoreceu a concentração de

raízes na camada 0,0 a 0,05m, onde se concentrou 73,9% e 63,8% da massa de matéria seca das raízes de milho, quando da utilização de semeadora equipada com disco liso operando a 0,05m (T1) e operando а 0,07m haste sulcadora respectivamente. Na camada 0,05 a 0,17m, estes percentuais não ultrapassaram 17,5% (T₁) e 27,2% (T₂), vindo a calhar com os relatos de Denardin et al. (2008; 2011) que argumentam sobre a utilização de semeadoras dotadas de elementos rompedores de solo de ação superficial, em solo sob "plantio direto" adotado erroneamente, estarem favorecendo a concentração do sistema radicular das culturas na camada superficial do solo.

Tabela 1. Massa de matéria seca de raiz, em gramas por planta de milho avaliada, no volume de solo correspondente a 9 dm⁻³, e massa de matéria seca (%) nas camadas avaliadas. Letras iguais na mesma linha não diferem significativamente entre si pelo teste de Tukey a 5% de probabilidade de erro.

Camada (m)	Tratamento ¹			CV%	
	T_1	T_2	T ₃	C V %	
	Massa de matéria seca (g planta-1)				
0,00 - 0,05	6,29A	5,61A	6,45A	17,4	
0,05-0,17	1,49C	2,39B	3,79A	13,4	
0,17-0,30	0,73A	0,79A	0,63A	8,9	
Total	8,52B	8,80B	10,87A	9,5	

 1T_1 = milho semeado com semeadora equipado com elemento rompedor de solo tipo disco liso atuando a 0,05m de profundidade; T_2 = semeadora equipada com haste sulcadora ajustada para operar a 0,07m; T_3 = semeadora equipada com haste sulcadora ajustada para operar a 0,17m de profundidade.

A densidade radicular também foi maior quando da utilização da haste sulcadora de ação profunda (T₃), em ralação a utilização da semeadora equipada com disco liso operando a 0,05m (T₁) e haste sulcadora operando a 0.05 e 0.07m de profundidade (T_2) , sobretudo na camada 0,05 a 0,17m (**Tabela 2**). A densidade radicular total por planta, com a maior profundidade de ação do rompedor de solo da semeadora aumentou, sendo que os valores passaram de 0,95 e 0,98 kg m $^{-3}$ em T_1 e T_2 , respectivamente, para 1,21 kg m $^{-3}$ em T_3 . O comprimento radicular total passou de 20.706 m m⁻³ e 21.714 m m^{-3} , respectivamente em T_1 e T_2 , para 24.602 m m⁻³ quando da utilização da semeadora equipada com hastes sulcadora de ação profunda (T₃) (**Tabela 2**). O que também ocorreu na camada 0,05 a 0,17m, onde os valores passaram de 12.810 m m $^{-3}$ em T $_1$ para 23.570 m m $^{-3}$ quando da utilização da semeadora equipada com hastes sulcadora de

ação profunda (T₃) (Tabela 2).

Tabela 2. Densidade (kg m⁻³) e comprimento (m m⁻³) das raízes de milho em cada camada de solo e para somatório (total). Letras iguais na mesma linha não diferem entre si pelo teste de Tukey a 5% de probabilidade de erro.

Camada (m)-	Tratamento ¹			CV%			
	T_1	T_2	T ₃	CV%			
Densidade radicular (kg m ⁻³)							
0,00-0,05	4,20A	3,58A	4,30A	19,8			
0,05-0,17	0,40B	0,70AB	1,01A	25,1			
0,17-0,30	0,20AB	0,21A	0,17B	08,9			
Total	0,95B	0,98BA	1,21A	09,9			
Comprimento radicular (m m ⁻³)							
0,00-0,05	56882A	37651A	56443A	23,2			
0,05-0,17	12810A	21679A	23570A	26,8			
0,17-0,30	14132A	15374A	12896A	10,2			
Total	20706A	21714A	24602A	09,4			

 $^{^{1}}T_{1}$ = milho semeado com semeadora equipado com elemento rompedor de solo tipo disco liso atuando a 0,05m de profundidade; T_{2} = semeadora equipada com haste sulcadora ajustada para operar a 0,07m; T_{3} = semeadora equipada com haste sulcadora ajustada para operar a 0,17m de profundidade.

CONCLUSÕES

A utilização de semeadora equipada com haste sulcadora de ação profunda para a semeadura de milho em "plantio direto" promoveu aumento da massa de matéria seca de raízes, aumento da densidade radicular e do comprimento radicular das plantas de milho.

A utilização de semeadora equipada com haste sulcadora de ação profunda para a semeadura de milho em "plantio direto" promoveu o aprofundamento do sistema radicular das plantas de milho no solo em "plantio direto".

REFERÊNCIAS

BERGAMIN, A.C.; VITORINO, A.C.T.; FRANCHINI, J.C.; SOUZA, C.M.A.; SOUZA, F.R. Compactação em um Latossolo Vermelho distroférrico e suas relações com o crescimento radicular do milho. Revista Brasileira de Ciência do Solo, 34:681-691, 2010.

CARVALHO Jr., I.A.; FONTES, L.E.F.; COSTA, L.F. Modificações causadas pelo uso e a formação de camadas compactadas e, ou, adensadas em um Latossolo Vermelho-Escuro textura média, na região do Cerrado. Revista Brasileira de Ciência do Solo, 22:505-514, 1998.

De MARIA, I.C.; CASTRO, O.M.; DIAS, H.S. Atributos físicos do solo e crescimento radicular de soja em

Latossolo Roxo sob diferentes métodos de preparo do solo. Revista Brasileira de Ciência do Solo, 23:703-709, 1999.

DENARDIN, J.E.; KOCHHANN, R.A.; BACALTCHUK, B.; SATTLER, A.; DENARDIN, N.D'A.; FAGANELLO, A.; WIETHÖLTER, S. Sistema plantio direto: fator de potencialidade da agricultura tropical brasileira. In: ALBUQUERQUE, A.C.S.; SILVA, A.G. ed. Agricultura tropical: quatro décadas de inovações tecnológicas, institucionais e políticas. Brasília, Embrapa Informação Tecnológica, 2008. v.1. p.1251-1273.

DENARDIN, J.E.; KOCHHANN, R.A.; FAGANELLO, A. 15 de abril dia nacional da conservação do solo: a agricultura desenvolvida no Brasil é conservacionista ou não? Boletim Informativo da Sociedade Brasileira de Ciência do Solo, v.36, p.10-15, 2011.

DRESCHER, M.S.; ELTZ, F.L.F.; DENARDIN, J.E.; FAGANELLO, A. Persistência do efeito de intervenções mecânicas para a descompactação de solos sob plantio direto. Revista Brasileira de Ciência do Solo. 35:1713-1722, 2011.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. 2.ed. Rio de Janeiro, 2006. 306p.

FREDDI, O.S.; CENTURION, J.F.; BEUTLER, M.N.; ARATANI, R.G.; LEONEL, C.L.; SILVA, A.P. Compactação do solo e intervalo hídrico ótimo no crescimento e na produtividade da cultura do milho. Bragantia: Revista de Ciências Agronômicas, 66:477-486, 2007.

FREDDI, O.S.; CENTURION, J.F.; DUARTE, A.P.; LEONEL, C.L. Compactação do solo e produção de cultivares de milho em Latossolo Vermelho. I — Características de planta, solo e índice S. Revista Brasileira de Ciência do Solo, 33:793-803, 2009.

NUNES, R. de S.; SOUSA, D.M.G. de; GOEDERT, W.J.; VIVALDI, L.J. Distribuição de fósforo no solo em razão do sistema de cultivo e manejo da adubação fosfatada. Revista Brasileira de Ciência do Solo, 35:877-888, 2011.

RITCHIE, S.W.; HANWAY, J.J. How a corn plant develops. Ames: Iowa University of Science and Technology, Cooperative Extension Service, 21 p, 1993.

ROSSETTI, K. de V.; CENTURION, J.F.; OLIVEIRA, P.R. de; ANDRIOLI, I. Atributos físicos nos tempos de adoção de manejos em Latossolo cultivado com soja. Revista Brasileira de Ciência do Solo, 36:367-376, 2012.

SILVA, V.R.; REICHERT, J.M.; REINERT, D.J.; BORTOLUZZI, E.C. Soil water dynamics related to the degree of compaction of two brazilian oxisols under no-tillage. Revista Brasileira de Ciência do Solo, 23:35-43, 2009.

VEIGA, M. da; HORN, R.; REINERT, D.J.; REICHERT, J.M. Soil compressibility and penetrability of an Oxisol from southern Brazil, as affected by long-term tillage systems. Soil and Tillage Research, 92:104-113, 2007.