Emissão de N₂O em pastagem degradada e pastagem sob Sistemas de Integração Lavoura-Pecuária-Floresta (ILPF) e Integração Lavoura-Pecuária (ILP)⁽¹⁾

<u>Maria Lucrécia Gerosa Ramos</u>⁽²⁾; Willian R. D. de Oliveira⁽³⁾; Arminda Moreira de Carvalho⁽⁴⁾; Kleberson Worslley de Souza⁽⁵⁾; Luana Ramos Passos Ribeiro⁽⁶⁾; Luciano Gomes Timóteo⁽⁶⁾

(1) Trabalho executado com recursos do projeto PECUS/EMBRAPA; (2) Professora Associada 4, Universidade de Brasília, Brasília – DF. <u>lucrecia@unb.br</u>; (3) Doutorando, Universidade de Brasília; Brasília – DF. <u>ruralwillian@hotmail.com</u>; (4) Pesquisadora, EMBRAPA/CERRADOS, Brasília – DF. arminda.carvalho@embrapa.br; (5) Pós-Doutorando, UNB/EMBRAPA CERRADOS, Brasília - DF. <u>klebersonws@gmail.com</u>; (6) Alunos de graduação, Universidade de Brasília, Brasília – DF.

RESUMO: Os gases de efeito estufa afetados pela agricultura são CO_2 , CH_4 e N_2O , mas o N_2O é o mais importante para sistemas agrícolas devido às emissões globais desse gás estarem diretamente relacionadas com a dinâmica de N do solo, além de possuir capacidade de aquecimento 310 vezes maior que o CO₂. O objetivo desse trabalho foi avaliar fluxos de N2O em solo sob pastagem degradada, sistemas de integração Lavoura-Pecuária (ILP) e Lavoura-Pecuária-Floresta (ILPF) e no solo sob Cerrado. O experimento foi conduzido na Embrapa Cerrados (Planaltina-DF). O solo sob pastagem degrada apresentou baixos fluxos de N₂O, muito próximos daqueles do Cerrado. O solo sob ILPF apresentou fluxos mais baixos quando comparado ao solo sob ILP. Dentre outros fatores, o aporte de matéria orgânica devido à maior produtividade de biomassa, tanto da lavoura principal como da pastagem implantada com a lavoura e maior temperatura média do solo no ILP, podem ter atribuído a esse sistema as maiores emissões de N₂O.

Termos de indexação: Gases de efeito estufa, Braquiária Piatã, Eucalipto.

INTRODUÇÃO

Estima-se que o desmatamento e as queimadas, além das atividades agropecuárias e florestais, respondem por mais de 80% da contribuição do Brasil para o efeito estufa do planeta (BRASIL, 2009). Assim, o Brasil é o quinto maior emissor de gases de efeito estufa (GEEs) do mundo, sendo um desafio o desenvolvimento de mecanismos de mitigação dessas emissões.

Os gases de efeito estufa afetados pela agricultura são CO_2 , CH_4 e N_2O , sendo que, o N_2O é o que possui maior importância para sistemas agropecuários, uma vez que 70% das emissões globais desse gás se originam com a dinâmica de N do solo. Além disso, o óxido nitroso possui potencial

de aquecimento 310 vezes maior do que o CO_2 (Mosier, 2004). O N_2O é produzido por microrganismos do solo influenciados, principalmente, pelo teor de nitrogênio (N) no solo, decomposição da matéria orgânica e umidade do solo (Rochette, 2008).

A modernização da agropecuária na região do Cerrado resultou em aumento de produtividade, gerado por altas doses de fertilizantes aplicadas e a expansão para novas áreas, incrementando o desmatamento, que, a longo prazo, pode tornar os agroecossistemas não sustentáveis. Com o intuito de minimizar os impactos negativos, a região vem adotando novas tecnologias, como o Sistema Plantio Direto (SPD) na integração Lavoura-Pecuária (ILP) e Lavoura-Pecuária-Floresta (ILPF). Desta forma, os produtores podem manter o nível de qualidade do solo, água e atmosfera, uma vez que esses sistemas integrados geram um ambiente diversificado, criando melhores condições para a microbiota do solo, que contribui para mitigação dos gases de efeito estufa (Baggs & Phillipot, 2010).

O objetivo desse trabalho foi avaliar fluxos de N_2O em solo sob pastagem degradada e sob sistemas de integração Lavoura-Pecuária (ILP) e Lavoura-Pecuária-Floresta (ILPF) no Cerrado.

MATERIAL E MÉTODOS

O experimento foi conduzido na Embrapa Cerrados, em Planaltina, DF. O experimento de lavoura-pecuária-floresta lavoura-pecuária (ILP) foi implantado em janeiro de 2009, em uma área anteriormente ocupada por pastagem degradada. Α área experimental apresenta as seguintes coordenadas geográficas: 15° 36' 38,82" S e 47° 42' 13,63" W, altitude de 980 m. A estação chuvosa da região concentra-se nos meses de outubro a abril, com média de 1100 mm na área do experimento. A temperatura média é de 21,7° C e a classificação climática segundo Koppen é Aw. O solo é caracterizado como Latossolo Vermelho, com textura argilosa.

O delineamento experimental foi em blocos casualizados, consistindo de dois tratamentos, com 3 blocos cada: 1. pastagem de Braquiária Piatã, implantada com a cultura do sorgo, intercalada com renques de Eucalyptus urograndis, com 2 linhas cada, com espaçamento de 2 x 2 m entre plantas e 22 m entre renques (ILPF); 2. pastagem de Braquiária Piatã implantada com sorgo em sistema de ILP, além de uma área de pastagem degradada com a mesma gramínea utilizada nos dos demais experimentos, implantada em 2007/2008 utilizada como testemunha. Foi utilizada também uma parcela Cerrado Nativo, adjacente de experimento.

Em abril de 2012, após o estabelecimento da forrageira, foi passado triton em toda pastagem para uniformizar a área. Em cada parcela foram implantadas 3 câmaras estáticas compostas de uma base de metal retangular (38 x 58 cm). Cada câmara foi inserida no solo até a profundidade de 5 cm. ficando com uma altura de 10 cm acima do solo. Uma tampa retangular com largura e comprimento iguais aos da base, era colocada sobre a base e o sistema era vedado com uma espuma de borracha, antes das amostragens de gases. As coletas de gases nas câmaras foram feitas utilizando-se seringas de 60 mL e as amostras foram mantidas em frascos de vidro vedados com septos de borracha cloro butírica, para subsequente análise das concentrações de N₂O por cromatografia gasosa.

Em cada amostragem de gás, foi determinada a temperatura do solo a 5 cm de profundidade no mesmo momento em que se determinou a temperatura da câmara.

Foram coletadas amostras de solo a cada duas amostragens de gases no período matutino (10:00 h). As amostras de solo foram colocadas em latas metálicas lacradas com fita crepe, para a determinação de umidade. No laboratório, as latas contendo amostras úmidas foram pesadas, colocadas em estufa a 105º C por 72 horas, em seguida pesadas para determinação da umidade gravimétrica. Os valores de umidade gravimétrica foram convertidos para Espaço Poroso Saturado com Água (EPSA %) calculado pela fórmula: EPSA (%) = (umidade gravimétrica (%) x densidade do solo)/ porosidade total do solo x 100; onde: porosidade total do solo = (1-(densidade do solo/2,65)), com 2,65 [g cm⁻³] sendo a densidade das partículas assumida do solo.

As coletas foram realizadas entre os meses de fevereiro e abril de 2013. No início de março de 2013, a área recebeu fertilização de cobertura com

uréia na dose de 160 kg ha⁻¹, permanecendo sem animais por 15 dias para a recuperação da pastagem. Em abril, após o estabelecimento da forrageira, foi passado triton em toda a pastagem para uniformizar a área.

As análises das concentrações de N_2O foram realizadas no laboratório de cromatografia da Embrapa Cerrados, utilizando um cromatógrafo de gás (ThermoTraceGC) equipado com uma coluna empacotada com Porapak Q e um detector de captura de elétrons. Os fluxos de N_2O (F N_2O) foram calculados pela equação F N_2O = $\delta C/\delta t$ (V/A) M/Vm, onde $\delta C/\delta t$ é a mudança de concentração de N_2O na câmara no intervalo de incubação; V e A são, respectivamente, o volume da câmara e a área de solo coberta pela câmara; M é o peso molecular de N_2O e Vm é o volume molecular na temperatura de amostragem.

RESULTADOS E DISCUSSÃO

Em geral, os valores dos fluxos de óxido nitroso no solo mostraram-se acima de 30 μ g N_2 O m^{-2} h^{-1} , sendo que os maiores fluxos ultrapassaram 150 μ g N_2 O m^{-2} h^{-1} no ILP e ILPF (Figura 1).

Na figura 2 são apresentadas as temperaturas do solo em cada área de estudo, entre os meses de Fevereiro e Abril de 2013. Durante o período de monitoramento das emissões de N₂O, a temperatura ⁰C. Dentre os do solo variou entre 20,2 e 24,5 tratamentos, o solo sob pastagem degradada apresentou os menores fluxos de N₂O (Figura 1), cujos valores foram semelhantes ao solo sob Cerrado Nativo. Esse comportamento pode ser atribuído à baixa entrada de nitrogênio no solo, seja por fontes inorgânicas (fertilizantes nitrogenados) ou orgânicas (mineralização da matéria orgânica do solo) na área de pastagem degradada, reduzindo a disponibilidade de N para a microbiota do solo. Na pastagem degradada, a biomassa vegetal produzida é limitada, principalmente pela fertilidade do solo, onde o fornecimento de nutrientes não está sendo suprido adequadamente e o nitrogênio deve ser o elemento mais limitante na área. Assim. é necessário cuidado ao se avaliar os sistemas estudados, tendo em vista que a produção de biomassa vegetal na pastagem degradada é muito inferior aos sistemas integrados de ILPF e ILP.

O solo sob sistema de ILP apresentou os maiores picos de emissão, com a maioria dos valores acima de 30 µg N m⁻² h⁻¹. Esses picos mais intensos de emissão podem ser atribuídos à maior produção de biomassa vegetal na área sob ILP, sem sombreamento das árvores de *Eucalyptus urograndis*. Isso ocorreu na cultura do sorgo durante o ciclo da cultura e posteriormente com a pastagem

após o seu estabelecimento. Com maior produção de biomassa, a deposição de material vegetal sobre o solo foi mais intensa na área de ILP, tanto do resíduo do sorgo após a colheita e especialmente após a roçagem da forrageira para uniformizar a área, aumentando, assim, o aporte de matéria orgânica e, consequentemente, a disponibilidade de C e N para a microbiota do solo (Baggs et al., 2000). Não obstante, a média de temperatura do solo é mais elevada na pastagem sob ILP em detrimento do sistema parcialmente sombreado de ILPF (Figura 2). Ressalta-se que a temperatura é outro fator que pode influenciar nas emissões de N2O (Luo et al. 2013). Por outro lado, mesmo apresentando médias de temperatura mais elevadas do solo, a pastagem degradada apresentou emissões de N2O mais baixas, muito próximas do solo sob Cerrado Nativo. Isto indica que, apesar das emissões de N₂O serem fortemente controladas ou influenciadas pela umidade, que pode alterar o espaço poroso preenchido por água (Figura 1), e a temperatura do solo, esses fatores, isoladamente, não são os únicos que influenciam as emissões, se não houver entrada de N no sistema via fertilizantes ou resíduos orgânicos. Se houver a entrada de N, o solo sob a pastagem degradada poderá apresentar fluxos superiores aos valores obtidos no Cerrado Natural.

A aplicação de ureia no solo resultou em um aumento considerável nos fluxos de N_2O (Figura 1), alcançando picos acima de 100 μ g N m⁻² h⁻¹ aos 5 dias após essa aplicação. Porém, não houve uma resposta imediata após a fertilização de cobertura, provavelmente devido à baixa umidade do solo registrada durante a aplicação do fertilizante nos sistemas ILPF e ILP. A primeira chuva ocorreu dois dias após essa fertilização, elevando os valores do espaço poroso saturado por água (EPSA) e provocando um aumento nos fluxos de N_2O (Figura 1). A partir do momento em que houve o aumento da umidade, a microbiota do solo provavelmente foi estimulada, refletindo em um incremento no processo de desnitrificação (Dick et al, 2001).

CONCLUSÕES

Nas condições de manejo desse trabalho:

- O solo sob sistema de ILPF apresenta menores fluxos de emissão de N₂O quando comparado ao ILP.
- O solo sob pastagem degradada mostra fluxos semelhantes aos obtidos sob Cerrado natural.

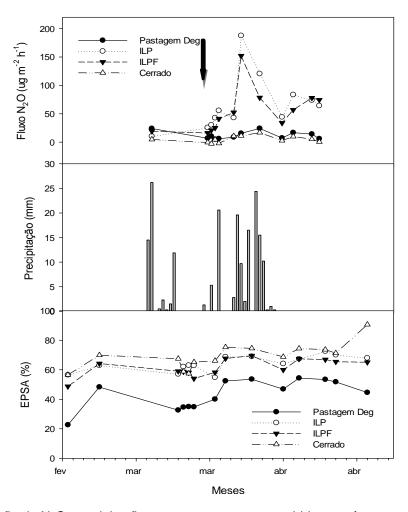
AGRADECIMENTOS

À CAPES, CNPq e à EMBRAPA pelo apoio na forma de bolsas e recursos, respectivamente, para o desenvolvimento do trabalho.

REFERÊNCIAS

BAGGS, E.M., REES R.M., SMITH K.A., VINTEN J.A..Nitrous legume oxide emission from soils after incorporating crop residues. Soil Use Manage. vol. 16, p. 82–87, 2000.

BAGGS, E.M. & PHILIPPOT, L. Microbial Terrestrial Pathways to Nitrous Oxide. In: SMITH, K. (ed). Nitrous Oxide and Climate Change. Earthscan, London, p. 4-36, 2010


BRASIL, Ministério da Ciência e Tecnologia. Inventário brasileiro das emissões e remoções antropicas de gases de efeito estufa: informações gerais e valores preliminares (30 de novembro de 2009). Disponível em: http://ecen.com/eee75/eee75p/inventario_emissões_brasi l.pdf. Acesso em: 12 maio 2013.

DICK, J., SKIBA, U., WILSON, J. The effect of rainfall on NO and N_2O emissions from Ugandan agroforest soils. Phyton. Ann - Rei. Bota. 41, 73-80, 2001.

LUO, G. J., KIESE, R., WOLF, B., BUTTERBACH-BAHL, K.: Effects of soil temperature and moisture on methane uptakes and nitrous oxide emissions across three different ecosystem types, Biogeosciences, 10, 927-965, 2013.

MOSIER, A.; WASSMANN, R.; VERCHOT, L., KING J.; PALM, C. Methane and nitrogen oxide fluxes in tropical agricultural soils: sources, sinks and mechanisms. Environment, Development and Sustainability, 6, 11-49, 2004.

ROCHETTE, P. No-till only increases N2O emissions in poorly-aerated soils. Soil & Tillage Research 101:97-100, 2008.

Figura 1 – Emissão de N_2O , precipitação e espaço poroso preenchido com água na camada de 0-5 cm do solo, no período de fevereiro a abril de 2013. A seta escura mostra o momento da fertilização em cobertura com uréia.

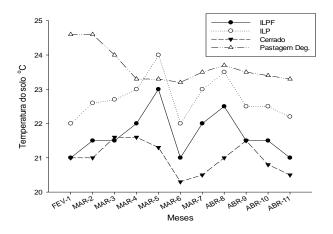


Figura 2 - Temperatura do solo até 5 cm de profundidade determinada nos dias de coleta