Óxido de Magnésio e Gesso Agrícola na forma de fertilizante granulado e a nutrição do cafeeiro (*Coffea canephora*)

<u>Lucas Santos Satiro⁽¹⁾</u>; Arieli Altoé⁽²⁾; Eduardo Stauffer⁽¹⁾; Felipe de Vaz Andrade⁽³⁾; Guilherme Kangussu Donagemma⁽⁴⁾.

⁽¹⁾ Graduando em Agronomia; Universidade Federal do Espirito Santo (UFES); Alto Universitário s/n, Alegre, ES; ⁽²⁾ Mestre em Produção Vegetal; UFES; Alto Universitário s/n, Alegre, ES; ⁽³⁾ Professor Adjunto, Departamento de Produção Vegetal; UFES; Alto Universitário s/n, Alegre, ES; ⁽⁴⁾ Pesquisador; Empresa Brasileira de Pesquisa Agropecuária – Solos; Rio de Janeiro, RJ, CEP: 24460-000.

RESUMO: Para atender a demanda de cálcio e magnésio do cafeeiro, a fonte mais utilizada ainda é calcário. o que se justifica técnica economicamente na implantação das lavouras, mas não nas adubações de manutenção, entretanto há necessidade do desenvolvimento de fertilizantes que sejam fontes economicamente viáveis de cálcio e magnésio para adubações de reposição anual. Este trabalho teve por objetivo avaliar a influência da aplicação de óxido de magnésio associado ao gesso e a micronutrientes na forma de fertilizante granulado sobre os teores de cálcio e magnésio no solo, e nas folhas do café conilon em experimento conduzido em casa de vegetação. O delineamento experimental foi em blocos casualizados, com 3 repetições, distribuídos em um esquema de parcelas subdivididas no tempo, sendo as parcelas principais compostas por 6 tratamentos (controle sem adubação; NPK; NPK + gesso agrícola; NPK + óxido de magnésio; NPK + gesso/MgO (70/30); NPK + gesso/MgO (70/30) + Zn + B); e as subparcelas compostas por 9 períodos de amostragem. Os resultados mostram teores superiores de cálcio e magnésio no solo para os tratamentos com aplicação de gesso agrícola, granulados gesso/MgO e gesso/MgO (70/30) + Zn + B, respectivamente. A aplicação de gesso agrícola também promove maiores conteúdos de cálcio nas folhas. O tratamento com granulado gesso/MgO (70/30) promove maiores conteúdos de Mg nas folhas.

Termos de indexação: Fertilizantes; cálcio; magnésio.

INTRODUÇÃO

A maioria dos solos brasileiros apresenta baixos teores de cálcio e magnésio trocáveis e elevados teores de alumínio, especialmente em camadas subsuperfíciais. Dessa forma, as raízes do cafeeiro tendem a se concentrar na superfície do solo, reduzindo a absorção de nutrientes que estão distribuídos em um maior volume de solo, além de tornar as plantas suscetíveis a veranicos (RESENDE, 2009).

O calcário é o principal corretivo da acidez do solo e fonte de Ca e Mg utilizado na agricultura brasileira. Porém, o Ca e o Mg liberados pelo calcário permanecem na profundidade onde este é aplicado. Sua reação no solo não permite a mobilidade desses nutrientes no perfil do solo, restringindo basicamente à correção superficial (POTTKER & BEN, 1998).

A aplicação de gesso agrícola, subproduto na produção de fertilizantes fosfatados, além de fornecer enxofre e cálcio, favorece a movimentação de cálcio e outros cátions no perfil, pela presença do íon sulfato (ERNANI et al., 2001), minimizando os efeitos negativos da aplicação de calcário no solo. Entretanto, o gesso agrícola não possui íons capazes de neutralizar o H⁺, não ocorrendo alterações do pH do solo (PORTZ, 2009).

Outro subproduto que apresenta potencial de utilização em culturas perenes, como fonte de Mg²⁺ e correção de acidez do solo, é o óxido de magnésio (MgO), produto intermediário do processo industrial de produção de refratários obtido da calcinação da magnesita (MgCO₃) (NOGUEIRA et al., 2012).

A associação do óxido de magnésio com o gesso agrícola garante o fornecimento de magnésio pelo óxido, tendo também a capacidade de corrigir a acidez do solo, assim como fornecimento de S e Ca pelo gesso agrícola, além de favorecer a movimentação de cálcio e de magnésio no perfil de solo.

Este trabalho teve por objetivo avaliar a influência da aplicação de óxido de magnésio associado ao gesso e a micronutrientes na forma de fertilizante granulado sobre os teores de cálcio e magnésio no solo e nas folhas do cafeeiro conilon em experimento conduzido em casa de vegetação.

MATERIAL E MÉTODOS

- O experimento foi conduzido em casa de vegetação do Centro de Ciências Agrárias da Universidade Federal do Espírito Santo (CCA UFES) em Alegre ES, foi instalado em fevereiro de 2012, utilizando-se uma muda do clone 02 da variedade Vitória por vaso.
- O delineamento experimental foi em blocos casualizados, com 3 repetições, distribuídos em um

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO

28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

esquema de parcelas subdivididas no tempo, sendo as parcelas principais compostas por 6 tratamentos: controle sem adubação (T1); NPK (T2); NPK + gesso agrícola (T3); NPK + óxido de magnésio (T4); NPK + gesso/MgO (70/30) (T5); NPK + gesso/MgO (70/30) + Zn + B (T6); e as subparcelas compostas por 9 períodos de amostragem (20, 40, 60, 80, 100, 120, 140, 160 e 180 dias após transplantio das mudas), totalizando 162 unidades experimentais.

O solo utilizado para montagem do experimento foi um Latossolo Vermelho Amarelo coletados na profundidade de 20 - 40 cm, com a seguinte caracterização química: pH em água = 5,4; P = 0,29 mg dm⁻³; K⁺ = 0,09 cmol_c dm⁻³; Ca²⁺ = 0,51 cmol_c dm⁻³; Mg²⁺ = 0,44 cmol_c dm⁻³; Zn²⁺ = 1,36 mg dm⁻³; Al³⁺ = 0,37 cmol_c dm⁻³; H+Al = 1,98 cmol_c dm⁻³; CTC potencial = 3,02 cmol_c dm⁻³; Saturação por bases = 34,44 %, de acordo com EMBRAPA (1997).

A adubação fosfatada e potássica foi realizada com 200 e 252 mg dm⁻³ de P e K (fosfato de potássio P.A.), respectivamente, em uma única aplicação, incorporando o fosfato de potássio P.A., em pó, à massa total de solo do vaso.

A adubação nitrogenada foi realizada com 100 mg dm⁻³ de N (sulfato de amônio, P. A.) aplicado parcelado em doses de 20 mg dm⁻³ aos 30, 60, 90, 120 e 150 dias após o transplantio das mudas, aplicado na forma de solução na superfície do solo.

O gesso agrícola (28 % de CaO) foi aplicado na superfície do solo na forma de pó, com dose equivalente a 270 mg dm⁻³ de Ca. O óxido de magnésio (60 % de MgO), foi aplicado na superfície do solo na forma de pó, com dose equivalente a 75 mg dm⁻³ de Mg.

As quantidades aplicadas do granulado gesso/MgO (70/30) (70 % de gesso agrícola e 30 % de óxido de magnésio) e do granulado gesso/MgO (70/30) + Zn + B (90 % de gesso/MgO (70/30) + 6 % de Zn e 4 % de B) foram baseadas na quantidade de Ca aplicada no tratamento com gesso agrícola. Os granulados foram aplicados na superfície do solo.

Após cada período de amostragem, o solo e as folhas de cada unidade experimental foram coletados para a realização das análises de cálcio e magnésio conforme EMBRAPA (1997), buscando verificar as possíveis variações químicas que ocorreram no solo e nas folhas em função dos tratamentos aplicados.

Os dados foram submetidos à análise de variância utilizando-se o software SAEG versão 9.1 (2007). Os tratamentos foram avaliados por meio da comparação de médias **(Tabela 1)** e testados pelo teste F nos níveis de 1 % e 5 % de probabilidade.

Tabela 1 – Contrastes médios dos teores de Ca e Mg no solo e dos conteúdos de Ca e Mg nas folhas do cafeeiro para os diferentes tratamentos.

Contrastes Ortogonais	Tratamentos								
	T1	T2	Т3	T4	T5	Т6			
C1	-5	1	1	1	1	1			
C2	0	-4	1	1	1	1			
C3	0	0	-2	0	1	1			
C4	0	0	0	-2	1	1			
C5	0	0	0	0	-1	1			

C1: T2 + T3 + T4 + T5 + T6 vs T1 (+++++,5-); C2: T3 + T4 + T5 + T6 vs T2 (++++,4-); C3: T5 + T6 vs T3 (++,2-); C4: T5 + T6 vs T4 (++,2-); e C5: T6 vs T5 (+,-). Testados pelo teste F nos níveis de 1 % e 5 % de probabilidade.

RESULTADOS E DISCUSSÃO

Os contrastes entre tratamentos para os teores de Ca²⁺ e Mg²⁺ no solo e dos conteúdos de Ca e Mg nas folhas são apresentados na **tabela 2.**

Tabela 2 – Contrastes das médias dos teores de Ca²⁺ e Mg²⁺ no solo e dos conteúdos de Ca e Mg nas folhas do cafeeiro para os diferentes tratamentos.

Torrido do carcorro para co ancronico tratarricintos:								
Contrastes Ortogonais	Ca Solo	Mg Solo						
C1	0,23**	0,68**						
C2	0,33**	0,86**						
C3	-0,43**	1,42**						
C4	0,27**	0,86**						
C5	-0,02 ^{ns}	-0,24**						
	Ca Folhas	Mg Folhas						
C1	13,53**	9,06**						
C2	-9,68**	13,10**						
C3	-24,85**	19,97**						
C4	-6,01**	10,81**						
C5	-3,06 ^{ns}	-2,79*						

C1: T2 + T3 + T4 + T5 + T6 vs T1 (+++++,5-); C2: T3 + T4 + T5 + T6 vs T2 (++++,4-); C3: T5 + T6 vs T3 (++,2-); C4: T5 + T6 vs T4 (++,2-); e C5: T6 vs T5 (+,-).**, * significativo a 1% e 5% de probabilidade, respectivamente, e ns não significativo pelo Teste de F.

O solo inicialmente se encontra com níveis baixos de Ca²⁺ (0,51 cmol_c dm⁻³) e Mg²⁺ (0,44 cmol_c). Analisando o contraste 1 **(C1, Tabela 2)**, verifica-se que a adição de alguma forma de adubação favorece o incremento dos teores de Ca²⁺ e Mg²⁺ no solo e, consequentemente, os conteúdos de Ca e Mg nas folhas.

Os teores de Ca²⁺ no solo são superiores nos tratamentos T3, T4, T5 e T6 quando contrastados ao tratamento T2 **(C2, Tabela 2).** Contudo, não é observado o mesmo comportamento para os conteúdos de Ca nas folhas do cafeeiro, o que pode

estar relacionado às relações Ca:Mg no solo nos tratamentos T4 (relação 0,5:1), T5 (relação 0,4:1) e T6 (relação 0,5:1) serem menores quando comparadas ao tratamento T2 (relação 1,5:1) (Tabela 3). Nestes casos, o excesso de Mg inibi a absorção de Ca pela planta devido o efeito antagônico, conforme descrito por Clarck et al. (1997).

Pelo contraste 3, verifica-se que a aplicação do tratamento T3 promove maiores teores de Ca²⁺ no solo e conteúdos mais elevados de Ca nas folhas do cafeeiro (C3, Tabela 2). Este fato se deve, possivelmente pela relação Ca:Mg no solo (relação 3,6:1) (Tabela 3) estar dentro da faixa ideal para a cultura do café (MATIELLO & GARCIA, 2012), quando comparada aos demais tratamentos, neste caso, distante da faixa ideal.

Analisando o contraste 4, observa-se que a aplicação dos tratamentos T5 e T6, em comparação ao tratamento T4, eleva os teores de Ca²⁺ disponível no solo (C4, Tabela 2). Entretanto este aumento de disponibilidade não corresponde ao aumento de absorção de Ca pela planta, observados pelos valores negativos e significativos do contraste 4 (Ca folhas), demonstrando conteúdos de Ca nas folhas superiores para o tratamento T4 (C4, Tabela 2). É provável que os elevados teores de Mg²⁺ no solo em relação aos teores de Ca²⁺ nos tratamentos T5 e T6 (Tabela 3) inibiram a absorção de Ca pela planta devido ao efeito antagônico. Clarck et al. (1997) observaram, no milho, que ocorreu redução na concentração de cálcio da parte aérea, com o aumento da aplicação de magnésio.

Os teores de Mg²⁺ no solo são superiores nos tratamentos T3, T4, T5 e T6, quando comparado ao tratamento T2, proporcionando conteúdos mais elevados de Mg nas folhas (C2, Tabela 2). Provavelmente, as menores relações de Ca:Mg no solo (Tabela 3) proporcionaram maiores conteúdos de magnésio na planta, mesmo comportamento observado por Clarck et al. (1997).

Pelos contrastes 3 e 4, verifica-se que a aplicação dos tratamentos T5 e T6 proporciona teores superiores de Mg²⁺ no solo frente aos tratamentos T3 e T4 e, de modo geral, os conteúdos de Mg são mais elevados nas folhas **(C3 e C4, Tabela 2).** Este fato pode estar relacionado ao fato do tratamento T3 não ter recebido nenhuma fonte de Mg e do tratamento T4 ter recebido quantidade menor de Mg em relação aos tratamentos T5 e T6.

Pelo contraste 5, verifica-se que os teores de Mg²⁺ no solo são mais elevados no tratamento T5 quando comparado ao tratamento T6, favorecendo a conteúdos de Mg nas folhas e raízes superiores **(C5,**

Tabela 2), o que pode estar relacionado às menores relações Ca:Mg no solo **(Tabela 3)**, favorecendo a absorção de Mg pelo cafeeiro. O mesmo comportamento foi observado por Clarck et al. (1997).

Observa-se que quanto maior a relação Ca:Mg no solo maiores são os conteúdos de cálcio na planta, enquanto as menores relações de Ca:Mg no solo proporcionam maiores conteúdos de magnésio na planta (Tabelas 2 e 3). Comportamento semelhante foi observado por Clarck et al. (1997).

CONCLUSÕES

Os teores mais elevados de cálcio e magnésio no solo são encontrados nos tratamentos com aplicação de gesso agrícola, dos granulados gesso 70/30 e gesso 70/30 + Zn + B, respectivamente.

A aplicação de gesso agrícola promove maiores conteúdos de cálcio do cafeeiro.

Os maiores conteúdos de magnésio são obtidos com a aplicação do granulado gesso 70/30.

AGRADECIMENTOS

Ao Centro de Ciências Agrárias da Universidade Federal do Espírito Santo pelo apoio técnico científico.

A Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) por disponibilizar o gesso.

A Magnesita S.A. pelo fornecimento do óxido de magnésio utilizado neste estudo.

Tabela 3 – Valores de Ca²⁺ e Mg²⁺ no solo cultivado com cafeeiro sob diferentes tratamentos e tempos de coleta.

Tratamento		Coleta (dias)										
Tratamento	20	40	60	80	100	120	140	160	180	Média		
	Ca ²⁺ (cmol _c dm ⁻³)											
T1	0,71	0,49	0,88	0,45	0,17	0,56	0,47	0,38	0,42	0,50		
T2	0,73	0,46	0,60	0,46	0,19	0,59	0,49	0,35	0,32	0,47		
Т3	0,91	1,37	1,36	0,99	0,77	1,96	1,27	1,01	1,07	1,19		
T4	0,73	0,50	0,57	0,53	0,16	0,58	0,47	0,47	0,39	0,49		
T5	0,81	0,67	0,83	0,62	0,47	1,15	0,89	0,65	0,83	0,77		
Т6	0,63	0,65	1,00	0,66	0,49	0,97	0,93	0,65	0,77	0,75		
	Mg ²⁺ (cmol _c dm ⁻³)											
T1	0,44	0,28	0,38	0,25	0,31	0,33	0,25	0,34	0,33	0,32		
T2	0,45	0,27	0,27	0,26	0,33	0,36	0,29	0,33	0,32	0,32		
T3	0,46	0,30	0,27	0,27	0,32	0,36	0,30	0,38	0,30	0,33		
T4	0,61	0,86	1,04	0,35	0,68	1,33	0,86	1,17	1,08	0,89		
T5	1,77	1,41	2,07	1,31	1,94	2,49	1,98	1,73	2,10	1,87		
T6	0,75	1,01	2,51	1,30	1,81	1,83	1,85	1,47	2,09	1,62		

T1: controle; T2: NPK; T3: NPK + gesso agrícola; T4: NPK + MgO; T5: NPK + gesso/MgO (70/30); e T6: NPK + gesso/MgO (70/30) + Zn + B.

Tabela 4 - Conteúdos de cálcio e magnésio nas folhas do cafeeiro para os diferentes tratamentos e tempos de coleta.

	Coleta (dias)										
Tratamento	20	40	60	80	100	120	140	160	180	Média	
	mg/planta										
	Cálcio										
T1	15,71	21,52	31,05	47,59	57,00	92,75	90,38	90,50	101,83	60,93	
T2	23,16	30,67	38,48	45,56	58,30	99,07	132,13	135,57	176,87	82,20	
T3	16,92	31,46	37,90	77,41	71,56	132,67	130,38	139,08	169,60	89,66	
T4	12,99	26,89	33,63	60,14	41,97	86,55	102,98	120,90	151,28	70,82	
T5	12,27	27,79	37,92	50,16	43,45	92,78	89,54	105,81	137,33	66,34	
T6	13,32	24,72	36,99	46,76	38,60	78,32	91,07	101,71	138,05	63,28	
	Magnésio										
T1	4,58	5,54	7,28	9,87	15,75	19,48	18,08	17,51	19,72	13,09	
T2	6,65	7,84	9,62	8,03	12,72	10,74	13,78	18,81	16,83	11,67	
T3	5,19	7,30	8,58	13,65	17,47	15,06	11,66	18,08	15,46	12,49	
T4	4,13	7,64	8,54	15,33	16,15	23,48	26,95	46,90	45,83	21,66	
T5	4,09	8,65	15,01	26,02	33,01	41,63	42,54	60,61	73,19	33,86	
T6	4,13	7,28	12,75	20,80	25,34	31,80	40,63	61,45	75,50	31,08	

T1: controle; T2: NPK; T3: NPK + gesso agrícola; T4: NPK + MgO; T5: NPK + gesso/MgO (70/30); e T6: NPK + gesso/MgO (70/30) + Zn + B.

REFERÊNCIAS

CLARK, R. B.; ZETO, S. K.; RITCHEY, K. D.; BALIGAR, V. C. Maize growth and mineral acquisition on acid soil amended with flue gas desulfurization byproducts and magnesium. Communi. Soil Sci. Plant Anal, v. 28, p. 1441-1459, 1997.

EMBRAPA. Centro Nacional de Pesquisa de Solos (Rio de Janeiro, RJ). Manual de métodos de análise de solo. 2.ed. Rio de Janeiro, 212p. 1997.

ERNANI, P. R.; RIBEIRO, M. S.; BAYER, C. Modificações químicas em solos ácidos ocasionadas pelo método de aplicação de corretivos da acidez e de gesso agrícola. Scientia Agricola, v.58, n.4, p.825-831, out./dez. 2001.

MATIELLO, J. B.; GARCIA, A. W. O magnésio está deficiente em grande parte das lavouras de café. Disponível em: http://www.fundacaoprocafe.com.br/sites/default/files/publicacoes/pdf/folhas/Folha91Magn%C3%A9sio.pdf.

2012>. Acesso em 01 de mar. de 2013.

NOGUEIRA, N.O.; TOMAZ, M.A.; ANDRADE, F.V.; REIS, E.F.; BRINATE, S.V.B. Influencia da aplicação de dois resíduos industriais nas propriedades químicas de dois solos cultivados com café arábica. Rev. Cienc. Agron., v. 43, n. 1, p. 11-21, jan-mar, 2012.

PORTZ, A. O gesso na agricultura brasileira. In: LAPIDO-LOUREIRO, F. E.; MELAMED, R.; FIGUEIREDO NETO, J. Fertilizantes: agroindústria e sustentabilidade. Rio de Janeiro: CETEM/MCT, 645p. 2009.

POTTKER, D.; BEN, J.R. Calagem para uma rotação de culturas no sistema plantio direto. R. Bras. Ci. Solo, v.22, p.75-684, 1998.

RESENDE, A. V. Micronutrientes na agricultura brasileira: disponibilidade, utilização e perspectivas. . In: LAPIDO-LOUREIRO, F. E.; MELAMED, R.; FIGUEIREDO NETO, J. Fertilizantes: agroindústria e sustentabilidade. Rio de Janeiro: CETEM/MCT, 645p. 2009.

SAEG - Sistema para Análises Estatísticas, Versão 9.1: Fundação Arthur Bernardes - UFV - Viçosa, 2007.