Qualidade do solo de áreas mineradas de bauxita em recuperação com cafeeiro⁽¹⁾

<u>Silvano Rodrigues Borges</u>⁽²⁾; Ivo Ribeiro da Silva⁽³⁾; Rogério Santana da Cruz⁽⁴⁾; Rafael Silva Santos⁽⁴⁾; Ernst Jan Verburg⁽⁴⁾; Laisa Gouveia Pimentel⁽⁵⁾

(1) Parte da tese de doutorado do primeiro autor, financiada com recursos da parceria SIF/UFV/CBA-Votorantim Metais.
(2) Pós-doutorando, Departamento de Solos, Universidade Federal de Viçosa, Viçosa, MG, borgesilvano@yahoo.com.br;
(3) Professor Associado, Departamento de Solos, Universidade Federal de Viçosa; (4) Graduando, Universidade Federal de Viçosa; (5) Mestranda, Programa de Pós-Graduação em Ciência do Solo, Universidade Federal do Rio Grande do Sul.

RESUMO: A recuperação e o monitoramento da qualidade do solo (QS) em áreas mineradas têm um desafio, assim como garantir desenvolvimento de culturas agrícolas sobre essas áreas. Objetivou-se propor um índice de qualidade do solo (IQS) para avaliar o impacto da mineração e o efeito de diferentes adubações e plantas de cobertura intercalares (PC) na recuperação de áreas mineradas de bauxita com cultivo do cafeeiro. O experimento foi instalado oito meses após a mineração e reconfiguração da área, avaliando-se o efeito da aplicação de quatro tipos de adubação: i) T - sem adubação; ii) C - cama de aviário; iii) Q química; iv) C+Q - cama de aviário + química. Nas entrelinhas do cafeeiro implantou-se quatro tipos de PC: i) sem planta; ii) braquiária (B); iii) estilosantes (E); iv) consórcio B+E. Amostras de solo foram coletadas antes da mineração, após seis meses da reconfiguração e após 19 meses da implantação do experimento para avaliação de atributos orgânicos, químicos, físicos e microbiológicos. A Análise de Fatores foi utilizada para seleção e atribuição de pesos a um conjunto de indicadores da QS, que foram combinados em um IQS. A mineração reduziu em cerca de 65 % o IQS. A adubação com cama de aviário recuperou a QS, em média, em 23 % e as PC's contribuíram para recuperar a QS somente quando adubadas. O IQS baseado na análise de fatores apresenta boa sensibilidade às práticas de recuperação, podendo ser viável no monitoramento de áreas mineradas de bauxita em recuperação com cafeeiro.

Termos de indexação: índice de qualidade do solo, indicadores de qualidade do solo, recuperação de áreas degradadas.

INTRODUÇÃO

A mineração pode ser considerada uma das atividades mais impactantes ao solo. Para exploração de bauxita é necessária a retirada da vegetação e da camada de solo superficial, demandando a posterior recuperação da área com o mesmo tipo de uso pré-existente. Assim, surge o desafio de recuperar e monitorar a qualidade do

solo (QS), profundamente alterada pela atividade de mineração, e garantir o desenvolvimento de culturas agrícolas de forma viável a médio e longo prazo após a mineração.

As práticas de manejo que adicionam ou mantém carbono orgânico no solo estão entre as mais importantes para restabelecer, manter ou melhorar a QS. Dentre estas práticas, a adubação orgânica pode trazer melhorias às condições do solo para o desenvolvimento das plantas, como a maior disponibilidade de nutrientes, aumento da CTC, melhor agregação, maior retenção de água e aumento da atividade microbiana (Carneiro et al., 2008). Outra prática é o uso de plantas de cobertura intercalares que, além de adicionar C ao solo, podem trazer benefícios ao solo e à cultura principal por reduzirem processos erosivos, reter umidade, funcionar como adubos verdes e melhorar a ciclagem de nutrientes (Matos et al., 2008).

Segundo Tótola & Chaer (2002), os trabalhos que avaliam a QS, muitas vezes são pouco conclusivos e de difícil interpretação, pelo grande volume de dados gerados. Neste sentido, a elaboração de índices de qualidade do solo (IQS), que integrem indicadores químicos, físicos e biológicos, pode ser de grande utilidade e praticidade na interpretação dos resultados e direcionamento das técnicas de recuperação de áreas mineradas de bauxita.

Assim, objetivou-se com este estudo propor um índice de qualidade do solo para avaliar o impacto da mineração e o efeito de diferentes adubações e plantas de cobertura intercalares na recuperação de áreas mineradas de bauxita com cultivo do cafeeiro.

MATERIAL E MÉTODOS

Área de estudo e instalação do experimento

O estudo foi conduzido em condições de campo em São Sebastião da Vargem Alegre-MG, em área onde houve extração de bauxita sob concessão da Companhia Brasileira de Alumínio/Votorantim Metais. O solo dominante na região é o Latossolo Vermelho-Amarelo distrófico típico argiloso.

Após oito meses da mineração e reconfiguração da área, o experimento foi instalado em blocos ao

acaso em parcelas subdivididas, com três repetições. As parcelas principais receberam os tratamentos com adubação de plantio: T - testemunha (sem adubação); C - orgânica (50 t/ha (base seca) de cama de aviário, sendo 1/2 no sulco de plantio e 1/2 na entrelinha); Q - química (8 t/ha de calcário dolomítico com 80 % de PRNT, sendo 1/3 no sulco de plantio e 2/3 na entrelinha; 1,5 t/ha de fosfato natural reativo Bayóvar aplicado no fundo do sulco e 0,70 t/ha aplicado na entrelinha); C+Q - adubações orgânica e química combinadas.

As subparcelas receberam nas entrelinhas do cafeeiro as plantas de cobertura intercalares (PC): SP - sem planta de cobertura; B - braquiária (25 kg/ha de sementes viáveis de *Brachiaria brizantha*, cultivar Piatã); E - estilosantes (cultivar Campo Grande, utilizando-se 2,5 kg/ha de sementes viáveis); B+E - consórcio braquiária-estilosantes (12,5 kg/ha de sementes viáveis de braquiária e 1,25 kg/ha de sementes viáveis de estilosantes).

O plantio das mudas de cafeeiro (*Coffea arabica*, var. Catuaí Vermelho) foi realizado em 01/02/11 (espaçamento 2,0 x 0,5 m) e a semeadura das PC's (quatro linhas de plantio distantes 0,25 m entre si e localizadas na faixa central da entrelinha do cafeeiro) em 15/03/11.

Amostragens e análises de solo

Realizaram-se amostragens de solo para avaliação de atributos orgânicos, químicos, físicos e microbiológicos nas seguintes condições: i) prémineração, em uma área com cafeeiro (10 anos de idade) e em uma área adjacente com mata nativa (Mata Atlântica em estádio de regeneração secundário); ii) seis meses pós-reconfiguração da área minerada (antes da aplicação dos tratamentos); iii) 19 meses após a aplicação dos tratamentos de recuperação da área minerada.

Amostras deformadas e indeformadas foram coletadas na camada de 0-20 cm para análises químicas (pH em água, N total, P, K⁺, Ca²⁺, Mg²⁺, Al³⁺, H+Al, Fe, Zn, Mn, P-remanescente) e físicas (densidade do solo (Ds), macro e microporosidade (micro) e porosidade total (PT)), conforme EMBRAPA (1997). O carbono orgânico total (COT) foi determinado de acordo com Yeomans & Bremner (1988) e o carbono orgânico lábil (COL) de acordo com Blair et al. (1995), modificado por Shang e Tiessen (1997).

Calculou-se a soma de bases (SB), a capacidade de troca de cátions em pH 7 (CTC), a capacidade de trocas de cátions efetiva (t), a saturação por alumínio (m) e a saturação por bases (V).

A respiração basal da biomassa microbiana (C-CO₂) foi determinada em amostras frescas, coletadas na camada de 0-20 cm, conforme metodologia descrita por Alef (1995), com

quantificação do CO₂ liberado após 48, 168, 360 e 720 horas do início da incubação.

Amostras na camada de 0-10 cm foram coletadas para análise da atividade das enzimas β -glicosidade (β -Glic) e fosfomoesterases ácida (FosAci) e alcalina (FosAlc), utilizando os métodos descritos por Eivazi e Tabatabai (1977; 1988).

Análises estatísticas e elaboração do IQS

Os dados foram submetidos à análise estatística multivariada visando selecionar um conjunto de indicadores para comporem um IQS, adaptando-se métodos empregados por Brejda et al. (2000) e Andrade et al. (2005).

A análise de fatores foi usada para agrupar os atributos do solo baseado em sua estrutura de correlação, utilizando a análise de componentes principais como método de extração. Os atributos do solo incluídos na análise foram o COT, COL, NT, P, Mn, Fe, Zn, pH, Al³⁺, H+Al, P-rem, SB, Ds, micro, macro, PT, FosAci, FosAlc, β-Glic e C-CO₂, com as variáveis padronizadas pela média e desvio padrão.

Nos fatores retidos (autovalores >1.0), os apresentaram cargas fatoriais que rotacionadas (rotação varimax) ≥ 0,84 (em módulo) foram inicialmente selecionados como candidatos a indicadores da QS, e foram agrupados como sendo orgânicos, químicos, físicos ou microbiológicos. Quando mais de um atributo no mesmo grupo de indicadores apresentou alta carga fatorial (≥ 0,84), selecionou-se um único atributo representativo do grupo, utilizando como critérios comunalidade, a maior correlação do atributo com o fator, a sensibilidade do atributo às alterações no solo, baseando-se na literatura, e sua maior praticidade de determinação.

Para atribuir os pesos (W_i) a cada indicador utilizado no IQS, os quatro atributos selecionados foram novamente submetidos à análise de fatores e os autovalores > 1,0 e as respectivas cargas fatoriais rotacionadas dos atributos foram utilizados no cálculo dos pesos relativos dos atributos no IQS, conforme a fórmula:

$$W_{i} = \frac{\sum_{j=1}^{n} (R_{ij}^{2} F_{j})}{\sum_{i=1}^{n} \left[\sum_{j=1}^{n} (R_{ij}^{2} F_{j})\right]}$$

em que:

W_i= peso relativo do atributo i no IQS;

R_{ii}= carga fatorial do atributo i no fator j;

 F_i autovalor do fator j;

i = índices dos atributos selecionados;

i = índices dos fatores retidos (autovalor > 1,0).

Os indicadores tiveram seus valores normalizados (escores) por meio de padronização relativa (Bhardwaj et al., 2011), e o IQS foi calculado

pelo somatório do escore de cada indicador (S_i) ponderado pelo peso deste indicador na avaliação da qualidade do solo (W_i), conforme a fórmula:

$$IQS = \sum_{i=1}^{n} S_i W_i$$

em que:

IQS =indice de qualidade do solo (entre 0 e 1); $S_i =$ escore do i-ésimo indicador (entre 0 e 1); $W_i =$ peso do i-ésimo indicador (entre 0 e 1); i =indices dos atributos.

Os dados dos IQS's gerados para os tratamentos de recuperação foram submetidos à ANOVA e as médias comparadas pelo teste de Scott-Knott (α = 10 %) e, esses tratamentos, comparados com as referências pelo teste de Dunnett (α = 10 %). As análises estatísticas foram processadas utilizando o software GENES (Cruz, 2006).

RESULTADOS E DISCUSSÃO

Os três primeiros fatores tiveram autovalores > 1,0, e explicaram 87,7 % da variação dos dados. Os atributos que apresentaram cargas fatoriais rotacionadas ≥ 0,84 (em módulo) com o primeiro fator ("depleção da matéria orgânica do solo") foram o COT, COL, NT, Al³+, H+Al, Ds, PT e FosfAci e com o segundo fator ("disponibilidade de nutrientes") foram o P, pH e SB. Dentre estes, os atributos selecionados como indicadores orgânicos, químicos, físicos e microbiológicos da QS foram, respectivamente, o COL, a SB, a Ds e a FosfAci.

Os atributos com maior peso (W_i) no IQS foram aqueles ligados à matéria orgânica do solo (Tabela 1). O COL, a Ds e a FosAci tiveram praticamente os mesmos pesos, enquanto a SB, ligada à disponibilidade de nutrientes, teve menor peso.

Tabela 1: Atributos selecionados como indicadores da qualidade do solo (camada de 0-20 cm), suas cargas fatoriais rotacionadas e pesos (W_i) no Índice de Qualidade do Solo (IQS) de áreas prémineração (Mata nativa e cafeeiro), seis meses pós-reconfiguração e após 19 meses de recuperação com cafeeiro utilizando diferentes adubações e plantas de cobertura intercalares

Atributos do solo	Cargas Fatoriais		14/
	Fator 1	Fator 2	W_{i}
COL	0,98	0,13	0,30
SB	-0,05	1,00	0,11
Ds	-0,97	0,11	0,30
FosfAci ^{/1}	0,96	-0,18	0,29
Autovalores	2,85	1,03	

COL = carbono orgânico lábil; SB = soma de bases; Ds = densidade do solo; FosfAci = atividade da fosfomonoesterase ácida. ^{/1} Amostras coletadas na camada de 0-10 cm.

O processo de mineração reduziu o IQS em cerca de 65 % em relação à área com cafeeiro prémineração (Figura 1). O cultivo de cafeeiro prémineração reduziu o IQS, mas não o suficiente para diferir da área de mata (p > 0,1). Isso pode estar relacionada à manutenção da MOS devido a ausência de preparo intensivo do solo e, portanto, de processos erosivos, e adoção de apenas capinas manuais e mantendo-se os restos vegetais na área.

Houve interação significativa (p < 0,05) entre os tipos de adubação e os tipos de plantas de cobertura intercalares (PC) sobre a QS. Não houve diferença (p > 0,1) entre as PC's no efeito sobre a QS, sendo que elas contribuíram para aumentar significativamente a QS quando adubadas (Figura 1). A adubação C+Q foi a que mais contribuiu para aumentar o IQS. No entanto, não houve diferença (p > 0,1) entre as adubações C, C+Q e Q onde se utilizou o estilosantes como PC, e entre as adubações C e Q onde se utilizou o consórcio B+E.

O curto período de recuperação não permitiu que nenhum dos tratamentos elevasse a QS a valores próximos das áreas pré-mineração. Porém, o uso de PC's e da adubação com cama de aviário, isolada ou combinada com a adubação mineral, mostrou uma recuperação da QS, em média, de cerca de 23 % em relação ao cafeeiro prémineração, durante 19 meses de recuperação (Figura 1). Isto indica que a adoção destas práticas pode contribuir para acelerar a recuperação da qualidade do solo de áreas mineradas de bauxita cultivadas com cafeeiro.

CONCLUSÕES

A mineração de bauxita causa grande impacto sobre a qualidade do solo, reduzindo drasticamente o índice de qualidade do solo em relação à áreas cultivadas com cafeeiro sem distúrbio.

As plantas de cobertura intercalares e a adubação com cama de aviário, principalmente combinada com a adubação mineral, contribuem para recuperar a qualidade do solo de áreas mineradas de bauxita.

O IQS baseado na análise de fatores para a seleção e ponderação dos indicadores da qualidade do solo apresenta boa sensibilidade às práticas de recuperação, podendo ser viável no monitoramento da recuperação de áreas mineradas de bauxita cultivadas com cafeeiro.

AGRADECIMENTOS

Os autores agradecem à Companhia Brasileira de Alumínio – Votorantim Metais pelo financiamento do projeto, concessão da área experimental e de bolsas de estudo.

REFERÊNCIAS

ALEF, K. Soil respiration. In: ALEF, K.; NANNIPIERI, P. (Eds.). Methods in Applied Soil Microbiology and Biochemistry. London: Academic Press, 1995. p.214-219.

ANDRADE, E. M.; PALÁCIO, H. A. Q.; CRISÓSTOMO, L. A.; SOUZA, I. H.; TEIXEIRA, A. S. Índice de qualidade de água, uma proposta para o vale do rio Trussu, Ceará. Revista Ciência Agronômica, 36(2):135-142, 2005.

BHARDWAJ, A. K.; JASROTIA, P.; HAMILTON, S. K.; ROBERTSON, G. P. Ecological management of intensively cropped agro-ecosystems improves soil quality with sustained productivity. Agriculture, Ecosystems & Environment, 140:419-429, 2011.

BREJDA, J. J.; MOORMAN, T. B.; KARLEN, D. L.; DAO, T. H.; Identification of regional soil quality factors and indicators: I. Central and Southern High Plains. Soil Science Society American Journal, 64:2115-2124, 2000.

CARNEIRO, M. A. C.; SIQUEIRA, J. O.; MOREIRA, F. M. S.; SOARES, A. L. L. Carbono orgânico, nitrogênio total, biomassa e atividade microbiana do solo em duas cronossequências de reabilitação após a mineração de bauxita. Revista Brasileira de Ciência do Solo, 32:621-632, 2008.

CRUZ, C. D. Programa Genes: Biometria. Viçosa: UFV, 2006. 382p.

EIVAZI, F.; TABATABAI, M. A. Glucosidases and galactosidades in soils. Soil Biology and Biochemistry, 20(5):601-606, 1988.

EIVAZI, F.; TABATABAI, M. A. Phosphatases in soils. Soil Biology and Biochemistry, 9:167-172, 1977.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Manual de métodos de análises de solos. 2.ed. Rio de Janeiro: EMBRAPA, 1997. 212p.

MATOS, E. S.; MENDONÇA, E. S.; LIMA, P. C.; COELHO, M. S.; MATEUS, R. F.; CARDOSO, I. M. Green manure in coffee systems in the region of Zona da Mata, Minas Gerais: characteristics and kinetics of carbon and nitrogen mineralization. Revista Brasileira de Ciência do Solo, 32: 2027-2035, 2008.

SHANG, C.; TIESSEN, H. Organic matter lability in a Tropical Oxisol: evidence from shifting cultivation, chemical oxidation, particle size, density, and magnetic fractionations. Soil Science, 162:795–807, 1997.

TÓTOLA, M. R.; CHAER, G. M. Microrganismos e processos microbiológicos como indicadores da qualidade dos solos. In: ALVAREZ V., V. H.; SCHAEFER, C. E. G. R.; BARROS, N. F.; MELLO, J. W. V.; COSTA, L. M. (Eds.). Tópicos em Ciência do Solo. Viçosa: SBCS, 2002. v.2, p.195-276.

YEOMANS, J. C. & BREMNER, J. M. A rapid and precise method for routine determination of organic carbon in soil. Communication in Soil Science and Plant Analysis, 19:1467-1476, 1988.

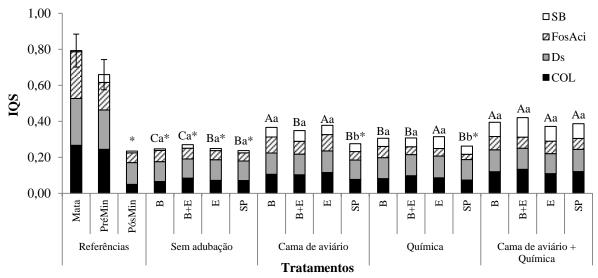


Figura 1: Médias dos Índices de Qualidade do Solo (IQS) e contribuição de cada indicador no IQS em áreas de mata nativa e cafeeiro pré-mineração (PréMin), área seis meses após a reconfiguração (PósMin) e em áreas com 19 meses em recuperação com cafeeiro sob diferentes adubações e plantas de cobertura intercalares (B = braquiária; E = estilosantes; B+E = consórcio braquiária e estilosantes; SP = sem planta de cobertura). Médias seguidas de mesma letra maiúscula dentro de cada tipo de planta de cobertura, e de letras minúsculas dentro de cada tipo de adubação não diferem a 10 % de probabilidade pelo teste Scott-Knott. * Não diferem da área de referência pós-reconfiguração a 10 % de probabilidade pelo teste de Dunnett. COL = carbono orgânico lábil; Ds = densidade do solo; FosfAci = atividade da fosfomoesterase ácida; SB = soma de bases. Barras verticais indicam o desvio padrão nas referências pré-mineração (n=3).