Efeito do pH na adsorção de boro em alguns solos do Paraná.

Rafael Aparecido Torue Bonetti⁽¹⁾; Caio José Fantinelli⁽¹⁾; Allex Barbosa Cegatte⁽¹⁾; Felipe Otávio Brito Pavan⁽¹⁾; Fábio Steiner⁽²⁾; Maria do Carmo Lana⁽³⁾.

(1) Acadêmico do Curso de Agronomia das Faculdades Integradas de Ourinhos – FIO. Ourinhos, São Paulo. E-mail: bonetti_1993@hotmail.com. (2) Professor do Curso de Agronomia das Faculdades Integradas de Ourinhos – FIO. Ourinhos, São Paulo. E-mail: fsteiner_agro@yahoo.com.br. (3) Professora do Curso de Agronomia da Universidade Estadual do Oeste do Paraná – UNIOESTE. Marechal Cândido Rondon, Paraná.

RESUMO: A adsorção de B pelo solo é o principal fenômeno que afeta sua disponibilidade para as plantas. Este estudo teve como obietivo avaliar o efeito do pH na adsorção de B em solos do Oeste do Paraná. Foram utilizadas amostras da camada de 0-20 cm, de quatro solos (Latossolo Vermelho -LV, Nitossolo Vermelho - NV, Argissolo Vermelho-Amarelo - PVA e Neossolo Regolítico - RR). Os solos foram incubadas com doses crescentes de carbonato de cálcio até pH constante. Para determinar a quantidade de B adsorvido amostras de solos foram mantidas em contato, mediante agitação por 24 h, com soluções de NaCl 0,01 mol L contendo 0,1; 0,2; 0,4; 0,8; 1,2; 1,6; 2,0; e 4,0 mg L⁻¹ de B. O ajuste dos resultados experimentais foi realizado pela forma não-linear da isoterma de Langmuir. A adsorção de B foi dependente do pH do solo, tendo aumentado em função do pH no intervalo entre 4,6 e 7,4. A maior capacidade de adsorção máxima de B foi encontrada no solo Nitossolo Vermelho (49,8 mg kg⁻¹), seguido do Vermelho-Amarelo Araissolo (22,5 mg Latossolo Vermelho (17,4 mg kg⁻¹) e Neossolo Regolítico (7,0 mg kg⁻¹).

Termos de indexação: isoterma de Langmuir, capacidade máxima de adsorção de boro, calagem.

INTRODUÇÃO

A deficiência de boro (B) no solo constitui uma séria limitação para o desenvolvimento de diversas culturas de interesse econômico, em razão da baixa fertilidade natural de alguns solos, da remoção pelas colheitas e da aplicação inadequada e/ou excesssiva de corretivos da acidez, que contribuem para sua insolubilização. Salienta-se, ainda, que o manejo adequado do B no sistema solo-planta é normalmente dificultado, em virtude de que o intervalo de concentração entre a deficiência e a toxicidade é a menor, se comparada à dos outros nutrientes. Tornando-se de grande relevância o conhecimento do comportamento químico do B no solo sob os pontos de vista agronômico e ambiental.

A disponibilidade de B no solo depende dos processos de adsorção-dessorção, que são influenciados pelas características físico-químicas dos solos (Arora & Chahal, 2005). A quantidade de B que um solo pode adsorver depende do pH da solução do solo, da composição mineral do solo e da textura. Destes, o pH tem sido relacionado como o principal fator que afeta a adsorção de B no solo (Soares et al., 2008), principalmente por exercer influência no controle da espécie predominante de B na solução e em atributos relacionados com a sua adsorção, como o balanço de cargas na superfície dos colóides. Outros fatores, como o teor de argila, de (hidr)óxidos de Fe e Al, de matéria orgânica do solo também afetam a adsorção de B em solos agrícolas (Arora et al., 2002; Goldberg et al., 2005).

A adsorção de B aumenta com o aumento do pH e atinge um máximo em torno de pH pH 9, e decresce a partir daí (Goldberg et al., 2005), pois o máximo desenvolvimento de sítios adsorção de B ocorre em pH equivalente a constante de dissociação (pKa) do ácido bórico, aproximadamente 9,2. O aumento da adsorção de B ocorre em decorrência do aumento da proporção de ânions borato [B(OH)₄], que acompanha a elevação do pH e pode formar tanto complexos de esfera interna e externa com superfícies minerais (Keren & Bingham, 1985).

Estudos realizados em solos brasileiros mostraram aumentos significativos na quantidade de B adsorvido com o aumento do pH (Rosolem & Bíscaro, 2007; Soares et al., 2008). Efeito este que pode ser ainda maior em solos cultivados em sistema de semeadura direta, onde a aplicação superficial dos corretivos sem posterior incorporação promove a elevação do pH na camada superficial do solo.

Este estudo teve como objetivo avaliar o efeito do pH na adsorção de B em alguns solos do Oeste do Paraná.

MATERIAL E MÉTODOS

Foram utilizadas amostras coletadas na camada superficial, de 0-20 cm, de quatro classes de solos da região Oeste do Estado do Paraná. Os solos amostrados foram um Latossolo Vermelho (LV), um Nitossolo Vermelho (NV), um Argissolo Vermelho-Amarelo (PVA) e um Neossolo Regolítico (RR), todos com balanço negativo de carga. As amostras foram secas ao ar, destorroadas e passadas em peneira de malha de 2 mm, e caracterizadas física e

quimicamente, e algumas características são mostradas na **Tabela 1**.

Para avaliar o efeito do pH na adsorção de B no solo, subamostras de solo foram incubadas até pH constante (cerca de 40 dias), após receberem a aplicação de 0, 1, 2, 4 e 8 Mg ha⁻¹ de CaCO₃. Após este período, as amostras foram secas ao ar e passadas em peneira de malha de 2 mm. Os valores de pH em água variaram de 4,6 a 6,8 no solo LV; de 4,7 a 7,3 no solo NV; de 4,8 a 6,5 no solo PVA; e, de 5,9 a 7,4 no solo RR.

Para o estudo da adsorção de B, amostras de 2,0 g de solo foram colocadas em tubos de polietileno e acrescidas de 20 mL de solução de equilíbrio de NaCl a 0,01 mol L-1, que continha 0,0; 0,1; 0,2; 0,4; 0,8; 1,2; 1,6; 2,0; e 4,0 mg L-1 de B na forma de ácido bórico. Os tubos foram mantidos em agitação lenta por 24 h, em agitador vertical a 24±2 °C. Em seguida, a suspensão foi filtrada em papel de filtro tipo Whatman nº 42, e uma alíquota de 5 mL do sobrenadante foi tomada para a determinação do B pelo método colorimétrico da Azometina-H à 420 nm (Abreu et al., 2001).

A quantidade de B adsorvido (B_{ads}) e a percentagem de adsorção (%B_{ads}) foram calculadas pelas seguintes relações, respectivamente:

$$\begin{aligned} B_{ads} &= [(C_0 - C_{eq})V]/m \\ \% B_{ads} &= [(C_0 - C_{eq})/C_0] \times 100 \end{aligned} \qquad [1]$$

onde, B_{ads} é a quantidade de B adsorvido após o equilíbrio (g kg⁻¹); C_0 e C_{eq} , a concentração inicial adicionada e a de equilíbrio (mg L⁻¹), respectivamente; V, o volume de solução (mL); e m, a massa de amostra de solo (g). A quantidade de B originalmente presente nas amostras **(Tabela 1)**, apesar de pequena, foi descontada no cálculo da quantidade de B adsorvido.

Isotermas de adsorção (B_{ads} vs. C_{eq}) foram construídas a partir dos resultados experimentais, e a adsorção de B foi comparada com aquela estimada pela forma não-linear da isoterma de Langmuir:

$$B_{ads} = (K_L C_{eq} Ads_{max})/(1 + K_L C_{eq})$$
 [3]

em que K_L é o parâmetro relacionado com a afinidade do solo pelo B (L mg^{-1}) e Ads_{max} é a capacidade de adsorção máxima de B ($mg~kg^{-1}$). A isoterma de Langmuir foi ajustada aos resultados de adsorção de B pelos programas Fitfun.bas, através da utilização da técnica de regressão não-linear. O método dos quadrados mínimos para ajuste de curva tem sido recomendado nos últimos anos, porque não exige a linearização da isoterma, o que evita tanto a introdução de mudanças na distribuição dos erros quanto à aquisição de parâmetros influenciados (K_L e Ads_{max}) (Soares et al., 2008).

RESULTADOS E DISCUSSÃO

O modelo de Langmuir ajustou-se bem aos valores de B adsorvido pelos solos, em toda a faixa de concentração e de pH estudada **(Figura 1)**, por apresentar altos coeficientes de determinação (R² ≥ 0,96). Esses resultados eram esperados, porque não há registros de desvios da equação de Langmuir em concentrações inferiores a 30 mg L⁻¹ de B (Alleoni & Camargo, 2000).

Para o Neossolo Regolítico (RR) as isotermas exibiram o clássico comportamento tipo "L" (Langmuir), particularmente, nos valores mais baixos de pH (Figura 1), com menor energia de adsorção, caracterizadas pelo decréscimo adsorção à medida que a superfície do adsorvente vai se tornando saturada. A partir da inclinação das isotermas de adsorção, observa-se aumento na adsorção de B nas concentrações mais baixas. Com o aumento na concentração de B em solução, mais sítios foram ocupados e a reação foi mais difícil de ocorrer, ocasionando diminuição da inclinação da isoterma. Para os demais solos estudados a aparente inclinação constante (Figura 1) é inerente às isotermas do tipo "C", o que indica alta afinidade de adsorção. Nesse tipo de curva, o número e a energia dos sítios disponíveis para a adsorção permanecem constantes ao longo de toda a amplitude de concentração e pode ocorrer a expansão da superfície disponível de maneira proporcional à quantidade adsorvida, até que todos os sítios de adsorção sejam ocupados. Isso ocorreu em função das baixas concentrações iniciais de B (C₀) utilizadas no estudo.

A adsorção de B foi dependente do pH da solução, tendo aumentado em decorrência do aumento de pH no intervalo entre 4,6 e 7,4 (Figura 1 e Tabela 2). Vários estudos mostraram que o pH é um dos principais fatores que afeta a disponibilidade de B nos solos (Rosolem & Bíscaro, 2007; Soares et al., 2008). As duas espécies de B presentes no solo [B(OH)₄ e B(OH)₃] possuem diferentes afinidades pelos colóides e aparecem em proporções variáveis na solução de equilíbrio em resposta a variações no pH. Em pH inferior a 7,0, a espécie B(OH)₃ predomina e, uma vez que a afinidade dos argilominerais pelo ácido bórico é baixa, a quantidade de B adsorvido tende a ser pequena. Com aumento do pH até próximo de 9,0, a proporção de B(OH)₄ aumenta rapidamente, porém a concentração de OH é ainda pequena para exercer efetiva competição com ânions borato. A partir desse valor, seguidos aumentos de pH resultam no aumento da concentração de OH em relação à de B(OH)₄, e a adsorção de B decresce devido à competição com OH pelos sítios de adsorção (Goldberg et al., 2005).

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO

28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

Tabela 2. Adsorção máxima de B (Ads $_{max}$), constante de afinidade (KL) e porcentagem de adsorção de B (%B $_{Ads}$) após a adição de 2,0 mg L $^{-1}$ de B em quatro solos do Estado do Paraná com diferentes valores de pH

Solo	pН	Consta Lang	%B _{Ads}	
		Ads _{max}	KL	_
		mg kg ⁻¹	L mg ⁻¹	%
Latossolo Vermelho	4,6 4,9 5,2 5,7 6,8	4,9 5,4 6,8 8,9 17,4	1,6 1,0 1,6 1,4 0,4	28 36 41 52 63
Nitossolo Vermelho	4,7 5,4 6,1 6,7 7,4	12,7 16,1 26,3 33,0 49,8	1,0 0,5 0,3 0,3 0,2	34 41 53 58 62
Argissolo Vermelho-Amarelo	4,9 5,4 6,0 6,7 7,3	4,4 9,0 13,3 16,5 22,5	1,6 0,6 0,5 0,5 0,4	36 41 51 64 78
Neossolo Regolítico	5,1 5,5 6,1 6,5 7,0	3,5 3,8 4,0 5,5 7,0	1,7 1,2 1,0 1,0 1,4	26 33 34 39 43

Os valores das constantes de Langmuir **(Tabela 2)** foram semelhantes àqueles encontrados em estudos que utilizaram um intervalo semelhante para concentração de B adicionada aos solos. A constante de afinidade K_L variou de 0,17 a 1,67 L mg⁻¹, enquanto a adsorção máxima (Ads_{max}) oscilou entre 3,54 e 49,75 g kg⁻¹. A grande variação desses parâmetros pode ser atribuída às diferenças nos atributos químicos, físicos e mineralógicos dos solos, além do efeito da variação do pH.

Os maiores valores de Ads_{max} foram encontrados no solo NV, seguido do PVA e do LV. Já o solo RR apresentou os menores valores de Ads_{max} (Tabela 2). A menor capacidade de adsorção de B obtida para o solo RR pode ser explicado em virtude deste solo ser pouco evoluído quanto ao grau de intemperismo evidenciado pelo índice de intemperização Ki superior a 2,46 (Tabela 1), além de apresentar maior proporção de cargas negativas (Δ pH de -1,90) em relação aos demais solos (Tabela 1).

A porcentagem de adsorção do B (Tabela 2) aumentou com a elevação do pH. No LV, o aumento do pH de 4,6 para 6,8 resultou em aumento de 35%. Para o NV o aumento do pH de 5,9 para 7,3 resultou em aumento de 27%. Já no PVA e no RR, o aumento do pH de 4,8 para 6,5 e de 6,0 para 7,4 promoveu aumentos na adsorção de B de 43% e de

16%, respectivamente. Esse aumento da adsorção máxima com a elevação do pH pode ser explicado pelo aumento do número de sítios ativos de adsorção e pela maior proporção do íon borato [B(OH)₄] em relação ao ácido bórico [B(OH)₃].

CONCLUSÕES

A quantidade de B adsorvido pelos solos aumentou com o aumento da concentração desse elemento.

Adsorção de B aumentou com o aumento do pH do solo.

A energia de ligação diminuiu com o pH, na maioria dos solos, o que indica que a valores de pH mais elevados, o B é mais fracamente adsorvidos.

A maior capacidade de adsorção máxima de B no Nitossolo Vermelho é devido ao maior teor de argila e matéria orgânica deste solo.

REFERÊNCIAS

Abreu, M.F.; Abreu, C.A. & Andrade, J.C. Determinação de boro em água quente usando aquecimento com microondas. In: Van Raij, B.; Andrade, J.C.; Cantarella, H. & Quaggio, J.A. (Eds.). Análise química para avaliação da fertilidade de solos tropicais. Campinas: Instituto Agronômico, p. 231-239. 2001.

Alleoni, L.R.F. & Camargo, O.A. Boron adsorption in soils from the state of São Paulo, Brazil. Pesquisa Agropecuária Brasileira, 35:413-421, 2000.

Arora, S., & Chahal, D.S. Available boron content in benchmark soils of Punjab under different moisture regimes in relation to soil characteristics. Agropedology, 15:90-94, 2005.

Arora, H.; Bhardwaj, S.S. & Sharma, B.D. Effect of organic matter on boron adsorption by some soils of Punjab. Asian Journal of Chemistry, 14:746-752, 2002.

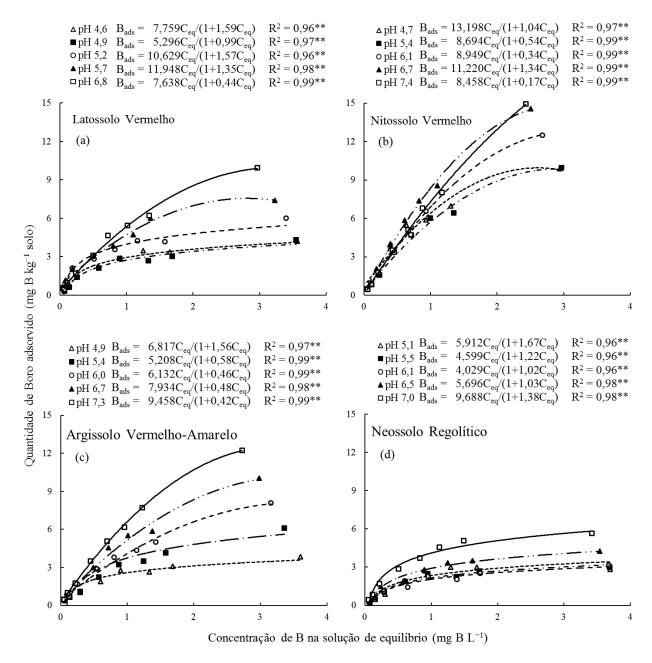
Goldberg, S.; Corwin, D.L.; Shouse, P.J. & Suarez, D.L. Prediction of boron adsorption by field samples of diverse textures. Soil Science Society of America Journal, 69:1379-1388, 2005.

Keren, R. & Bingham, F.T. Boron in water, soils, and plants. Advanced Soil Science, 1:229-276, 1985.

Rosolem, C.A. & Bíscaro, T. Adsorção e lixiviação de boro em Latossolo Vermelho-Amarelo. Pesquisa Agropecuária Brasileira, 42:1473-1478, 2007.

Sharma, K.R.; Scrivastava, P.C.; Srivastva, P. & Singh, V.P. Effect of farmyard manure application on boron adsorption-desorption characteristics of some soils. Chemosphere, 65:769-777, 2006.

Soares, M.R.; Casagrande, J.C. & Alleoni, L.R.F. Adsorção de boro em solos ácricos em função da variação do pH. Revista Brasileira de Ciências do Solo, 32:111-120, 2008.


XXXIV congresso brasileiro de ciência do solo

28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

Tabela 1. Atributos químicos e físicos das amostras de solos coletadas na região Oeste do Estado do Paraná na camada de 0-20 cm de profundidade

Solo	рН	∆ рН	MO	Al	CTCe	Bsol.	Argila	SiO ₂	Fe ₂ O ₃	Al_2O_3	Ki
			g dm ⁻³	mmol _c dm ⁻³ mç		mg dm ⁻³	g kg ⁻¹				
LV	4,6	-0,4	22,8	2,0	78	0,16	580	209	169	179	1,98
NV	4,7	-0,6	32,6	3,0	130	0,35	740	234	198	223	1,79
PVA	4,9	-0,8	10,9	2,5	98	0,40	720	206	162	197	1,78
RR	5,1	-1,9	12,5	0,0	129	0,54	490	261	196	153	2,86

pH em água na relação solo:água de 1:2,5; Δ pH: delta pH utilizado para a estimativa do balanço de cargas; MO: matéria orgânica; CTCe: capacidade de troca de cátions efetiva; Bsol.: B solúvel em água quente. SiO₂, Fe₂O₃ e Al₂O₃: óxidos de silício, ferro e alumínio extraídos pelo ataque sulfúrico. Ki: índice de intemperização: SiO₂/Al₂O₃.

Figura 1. Isotermas de adsorção de B obtidas a partir do ajuste pela equação de Langmuir em quatro solos do Estado do Paraná com diferentes valores de pH. ** p<0,01.